Оценочные средства для проведения аттестации по дисциплине «Медицинские технологии» для обучающихся по образовательной программе специальности Медицинская биохимия (уровень специалитета) форма обучения очная на 2023-2024 ученый год

Промежуточная аттестация по дисциплине проводится в форме экзамена.

Промежуточная аттестация включает следующий тип задания: собеседование.

Перечень контрольных вопросов для собеседования:

№	Вопросы для промежуточной аттестации	Проверяемые
1	Основные разделы биотехнологии. Предмет, цель и задачи биотехнологии. Разделы биотехнологии. Биотехнология и фундаментальные дисциплины. Становление биотехнологии в Волгоградской области.	КОМПЕТЕНЦИИ ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
2.	Основные направления развития современной биотехнологии. Практическое использование биотехнологических методов и подходов в деятельности человека.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
3.	Микробиологическая биотехнология. Сельскохозяйственная и экологическая биотехнология. Примеры международного сотрудничества в биотехнологии.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
4.	Методы традиционной биотехнологии, их классификация. Проблемы стабилизации промышленных штаммов, способы поддержания активности. Международные и национальные коллекции культур микроорганизмов и их значение для развития биотехнологии.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
5.	Биотехнология и медицина. Биотехнология в понимании основ патологии инфекционных, онкологических и наследственных заболеваний. Применение методов биотехнологии в экспериментальной и клинической медицине.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
6.	Биотехнологические объекты. Классификация. Критерии выбора биотехнологических объектов для производственных целей.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
7.	Биотехнологические объекты как средство производства лекарственных, профилактических и диагностических препаратов, гормонов, антибиотиков, витаминов и др.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
8.	Способы повышения эффективности	ОК-5; ОПК-5; ПК-6; ПК-11;

		T
	биотехнологического производства. Селекция и	ПК-13.
	направленное получение организмов-продуцентов	
	целевых продуктов. Внутриклеточная регуляция	
	метаболизма и управление биосинтезом целевых	
	биотехнологических продуктов.	
9.	Индукция и репрессия синтеза ферментов.	ОК-5; ОПК-5; ПК-6; ПК-11;
	Механизмы регуляции действия генов и их	ПК-13.
	использование в биотехнологических процессах.	
10.	Инженерная энзимология. Развитие инженерной	ОК-5; ОПК-5; ПК-6; ПК-11;
10.	энзимологии в Волгоградской облатси.	ПК-13.
	Использование ферментов и ферментных систем в	
	биотехнологическом производстве. Препаративные	
	и промышленные методы получения ферментных	
	препаратов.	
11.	Иммобилизованные ферменты и ферментные	ОК-5; ОПК-5; ПК-6; ПК-11;
	комплексы. Методы иммобилизации ферментов при	ПК-13.
	производстве лекарственных препаратов, витаминов	
	и других биологически активных веществ. Значение	
	энзимной инженерии для практического	
	здравоохранения.	
12.	Ферменты и их использование в микроанализе.	ОК-5; ОПК-5; ПК-6; ПК-11;
	Перспективы применения аналитической	ПК-13.
	энзимологии в клинической диагностике и научных	
	исследованиях.	
13.	Биотехнологические системы производства.	ОК-5; ОПК-5; ПК-6; ПК-11;
13.	Принципы и этапы биотехнологического	ПК-13.
	·	THE 13.
	производства веществ-метаболитов. Элементы,	
1.4	составляющие биотехнологический процесс.	OK 5. OHK 5. HK (. HK 11.
14.	Структура биотехнологического производства.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
	Схема последовательно реализуемых стадий	11K-13.
	превращения исходного сырья в биологически	
	активный препарат.	
15.	Отличия биотехнологических процессов от	ОК-5; ОПК-5; ПК-6; ПК-11;
	химического катализа и синтеза.	ПК-13.
16.	Критерии подбора биореакторов. Устройство,	ОК-5; ОПК-5; ПК-6; ПК-11;
	режимы работы биореакторов при реализации	ПК-13.
	конкретных целей.	
17.	Проблемы при масштабировании	ОК-5; ОПК-5; ПК-6; ПК-11;
	биотехнологических процессов.	ПК-13.
18.	Конечные стадии биотехнологического процесса.	ОК-5; ОПК-5; ПК-6; ПК-11;
-0.	Этапы выделения, концентрирования и очистки	ПК-13.
	биотехнологических продуктов. Основные методы.	
19.	Контроль и управление биотехнологическим	ОК-5; ОПК-5; ПК-6; ПК-11;
19.	1 1	ПК-13.
	процессом. Биотехнология и проблемы экологии и	1111 15.
20	охраны окружающей среды.	OK 5. OHK 5. HK 6. HK 11
20.	Технология получения и культивирования линий	ОК-5; ОПК-5; ПК-6; ПК-11;
	животных и растительных клеток. Краткая история	ПК-13.
	развития технологии получения и культивирования	
	линий животных и растительных клеток.	
21.	Культуры тканей растений, животных и человека как	ОК-5; ОПК-5; ПК-6; ПК-11;
	биотехнологические объекты получения целевых	ПК-13.
	продуктов. Фармакотехнология. Значения клеточной	

	T	
	инженерии для экспериментальной и клинической медицины.	
22.	Технология получения и культивирования линий эукариотических клеток. Основные требования к лаборатории при работе с клеточными культурами. Принцип стерильной работы и условия культивирования клеточных культур.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
23.	Принципы конструирования и этапы приготовления культуральных сред для тканевых культур.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
24.	Основные этапы подготовки и стерилизации лабораторной посуды для культивирования клеточных линий. Контроль бактериального заражения тканевых культур и сред для их культивирования.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
25.	Сохранение и оценка качества культур клеточных линий. Субкультивирование. Криоконсервирование клеточных линий. Основные подходы к масштабированному культивированию клеток в условиях биотехнологического производства.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
26.	Основные принципы и методы культивирования клеточных линий на микроносителях.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
27.	Перевиваемые клеточные линии. Особенности культивирования монослойных и трансформированных клеточных линий. Получение биологически активных веществ в культуре клеток.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
28.	Итоги и перспективы использования технологии культивирования клеточных линий в экспериментальной и клинической медицине.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
29.	Гибридизация клеточных линий. Метод гибридизации соматических клеток. Метод слияния протопластов. Основы и принципы селекции клеток, селективные среды. Получение новых гибридных культур в качестве целевых биотехнологических продуктов.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
30.	Иммунологические и иммунохимические методы исследования культур клеточных линий и продуктов их синтеза.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
31.	Предпосылки возникновения и этапы развития генетической инженерии. Развитие генетической инженерии в Волгоградской области.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
32.	Принципиальная схема эксперимента по получению и клонированию рекомбинантных молекул ДНК.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
33.	Система рестрикции-модификации у бактерий и ее роль в регуляции переноса генетической информации между бактериями. Характеристика рестриктаз и других ферментов, используемых в молекулярном клонировании.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
34.	Понятие о векторной системе. Требования, предъявляемые к векторным молекулам и штаммамреципиентам. Векторы автономные и интегративные. Емкость вектора.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
35.	Понятие о репликоне. Плазмидные векторы.	ОК-5; ОПК-5; ПК-6; ПК-11;

	Характеристика основных типов плазмид,	ПК-13.
36.	используемых в генетической инженерии. Способы введение рекомбинантных ДНК в клетки бактерий: трансформация, мобилизация, трансфекция.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
37.	Фаг как потенциальный вектор клонирования. Векторы на основе бактериофагафага λ. Стратегия клонирования в фаговых векторах. Упаковка фаговой ДНК <i>in vitro</i> .	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
38.	Космиды. Основные свойства космид. Стратегия клонирования в космидах.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
39.	Фазмиды. Структурные и функциональные свойства фазмид. Стратегия клонирования в фазмидах.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
40.	Стратегия создания библиотек генов: выбор вектора клонирования, выбор рестриктазы для фрагментирования геномной ДНК, условия гидролиза геномной ДНК, фракционирование фрагментов ДНК по размерам.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
41.	Полимеразная цепная реакция – области применения в здравоохранении. Состав реакционной смеси для ПЦР. Этапы постановки ПЦР.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
42.	Методы отбора и анализа рекомбинантных клонов (анализ фенотипа, инсерционная инактивация, рестрикционный и гибридизационный анализ).	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
43.	Применение трансгенной технологии для получения медицинских препаратов.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
44.	Генетическая инженерия эукариотов и области применения. Векторы на основе вирусов животных. Понятие о генотерапии.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
45.	Этические проблемы при работе с рекомбинантными ДНК и при создании трансгенных организмов.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
46.	История разработки гибридомной технологии получения моноклональных антител заданной специфичности.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
47.	Классический опыт Келера и Мильштейна по получению гибридом-продуцентов моноклональных антител (1975 г.).	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
48.	Основные достижения иммунологии и клеточной биологии, предопределившие успешную реализацию идеи Келера и Мильштейна о получении гибридом, продуцирующих моноклональные антитела узкой специфичности.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
49.	Основные требования к проведению подготовительных этапов при воспроизведении гибридомной технологии.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
50.	Принципы подбора злокачественного партнера для гибридизации клеточных линий.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
51.	Методы стимуляции В-лимфоцитов мыши при подготовке к гибридизации клеточных линий.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
52.	Методы скрининга позитивных гибридом- продуцентов моноклональных иммуноглобулинов. Принципиальная схема НМФА и непрямого	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.

	варианта ТИФМ.	
53.	Техника гибридизации клеточных линий при	ОК-5; ОПК-5; ПК-6; ПК-11;
	получении гибридом-продуцентов МКА. Методы	ПК-13.
	слияния клеточных партнеров.	
54.	Методы контроля динамики образования гибридных	ОК-5; ОПК-5; ПК-6; ПК-11;
	клонов.	ПК-13.
55.	Общая схема гибридизации клеток мышиной	ОК-5; ОПК-5; ПК-6; ПК-11;
	миеломы и иммунных спленоцитов мыши.	ПК-13.
56.	Методы направленного отбора гибридных клонов:	ОК-5; ОПК-5; ПК-6; ПК-11;
	методы метаболической и биохимической селекции.	ПК-13.
57.	Условия культивирования гибридных клонов.	ОК-5; ОПК-5; ПК-6; ПК-11;
		ПК-13.
58.	Методы клонирования.	ОК-5; ОПК-5; ПК-6; ПК-11;
		ПК-13.
59.	Криоконсервирование гибридом: режимы	ОК-5; ОПК-5; ПК-6; ПК-11;
	замораживания, защитные среды.	ПК-13.
60.	Критерии оценки жизнеспособности и	ОК-5; ОПК-5; ПК-6; ПК-11;
	функционального состояния гибридом-продуцентов	ПК-13.
<i>C</i> 1	MKA.	
61.	Генетический контроль синтеза иммуноглобулинов.	ОК-5; ОПК-5; ПК-6; ПК-11; ПК-13.
62.	Typoveno povino kivi typ pyforiny v kiotok	ОК-5; ОПК-5; ПК-6; ПК-11;
02.	Тиражирование культур гибридных клеток, накопление МКА <i>in vitro</i> и <i>in vivo</i> .	ПК-13.
63.	Свойства МКА, их особенности, преимущества	ОК-5; ОПК-5; ПК-6; ПК-11;
03.	работы с моноклональными иммуноглобулинами.	ПК-13.
	Области применения МКА.	
64.	Методы очистки МКА, их концентрирования,	ОК-5; ОПК-5; ПК-6; ПК-11;
04.	стерилизации, иммунохимического анализа.	ПК-13.
65.	Классы, субклассы мышиных иммуноглобулинов.	ОК-5; ОПК-5; ПК-6; ПК-11;
05.	Методы определения изотипов МКА.	ПК-13.
66.	Производственные клоны-продуценты МКА.	ОК-5; ОПК-5; ПК-6; ПК-11;
00.	Принципиальная схема накопления МКА в	ПК-13.
	препаративных количествах. Методы контроля	
	конечного продукта.	
67.	Изготовление медицинских иммунобиологических	ОК-5; ОПК-5; ПК-6; ПК-11;
	препаратов (МИБП) на основе МКА и преимущества	ПК-13.
	их использования в практической работе.	
68.	Метод аффинной хроматографии с использованием	ОК-5; ОПК-5; ПК-6; ПК-11;
	иммуносорбентов, приготовленных на основе МКА.	ПК-13.
	Принцип каскадной очистки антигенов.	
69.	Гибридомы человеческого происхождения.	ОК-5; ОПК-5; ПК-6; ПК-11;
	Перспективы их применения в медицине.	ПК-13.
	Использование гибридом человека в лабораториях	
	Волгоградской области.	
70.	Гетерогибридомы, трудности их получения и	ОК-5; ОПК-5; ПК-6; ПК-11;
	перспективы использования.	ПК-13.
71.	Применение МКА в клинике для диагностики и	ОК-5; ОПК-5; ПК-6; ПК-11;
	лечения.	ПК-13.
72.	МКА к антигенам возбудителей инфекционных	ОК-5; ОПК-5; ПК-6; ПК-11;
	заболеваний, их применение для индикации и	ПК-13.
	идентификации микроорганизмов, очистки	
	антигенов, определения их топографического	

	положения в микробной клетке.	
73.	Непрямой метод флуоресцирующих антител и его	ОК-5; ОПК-5; ПК-6; ПК-11;
	применение для скрининга гибридных клонов,	ПК-13.
	продуцирующих МКА.	
74.	Применение твердофазного иммуноферментного	ОК-5; ОПК-5; ПК-6; ПК-11;
	метода для выявления МКА.	ПК-13.
75.	Методы контроля видовой принадлежности МКА и	ОК-5; ОПК-5; ПК-6; ПК-11;
	гомогенности экспериментальных образцов	ПК-13.
	моноклональных иммуноглобулинов.	

В полном объеме фонд оценочных средств по дисциплине/практике доступен в ЭИОС ВолгГМУ по ссылке: https://elearning.volgmed.ru/course/view.php?id=1107

Рассмотрено на заседании кафедры молекулярной биологии и генетики «06» июня 2023 г., протокол № 10 а

Заведующий кафедрой

А.В.Топорков