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Abstract. Gene regulatory network is a collection of DNA which interact with each other
and with other matter in the cell. The lac operon is an example of a relatively simple genetic
network and is one of the best-studied structures in the Escherichia coli bacteria. In this work we
consider a deterministic model of the lac operon with a noise term, representing the stochastic
nature of the regulation. The model is written in terms of a system of simultaneous first order
differential equations with delays. We investigate an analytical and numerical solution and
analyse the range of values for the parameters corresponding to a stable solution.

1. Introduction

Bacterial genome plays a central role in controlling the cellular processes, such as the response
of a cell to environmental signals, the differentiation of cells and groups of cells in the unfolding
of developmental programmes, the replication of the DNA preceding the cell division and many
others [1, 2, 3, 4]. Proteins synthesized from genes may function as transcription factors binding
to regulatory sites of other genes, as enzymes catalyzing metabolic reactions, or as components
of signal transduction pathways. The degradation of proteins and the immediate DNA products
can also be regulated in the cell. The proteins involved in the regulatory functions are produced
by other genes. This gives rise to genetic regulatory network consisting of regulatory interactions
between DNA, RNA, proteins and small molecules. A simple network consists of one or more
input gene, metabolic, and signaling pathways, regulatory proteins that integrate the input
signals, several target genes, and the RNA and proteins produced from target genes.

The lac operon [1] is an example of a relatively simple genetic network and is one of the well-
studied and best-understood structures in the Escherichia coli (e.coli). It consists of a promoter,
and operator region and three larger structural genes, lacZ, lacY and lacA, with a preceding
regulatory operon responsible for producing a repressor, R, protein. In the absence of glucose
available for cellular metabolism, but in the presence of external lactose, lactose is transported
into the cell by a permease. Intracellular lactose, L, is then broken down into allolactose, A,
first and then glucose and galactose by the enzyme (-galactosidase, B. The allolactose feeds
back to bind with the lactose repressor and enable the transcription process to proceed [5, 6].

A number of mathematical models of the lac operon have been developed (see for example
3,4, 5, 7,8, 11, 12]). In this work, we consider a deterministic model of the lac operon with a
noise term representing the stochastic nature of the regulation. The model is written in terms of
a system of simultaneous first order differential equations with delay. We have investigated the
analytical and numerical solutions and analysed the range of values for the parameters leading
to stable solutions. The effects of the noise term on the concentrations levels are also presented.
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2. Deterministic model

Deterministic models have been widely used to analyse genetic regulatory systems [2, 3, 4]. In
many cases they are given by a system of ordinary differential equations (ODE). The ODEs
formalism models the concentration of RNAs, proteins and other molecules by time dependent
variables. The interactions in the network have a form of functional and differential relations
between concentrations. The network dynamics can be described by Michaelis-Menten enzyme
kinetics [4]. However, the deterministic model based on ODEs, describes an average response of
the system. It assumes that the concentration varies continuously and deterministically, both of
which assumptions may be questionable in case of gene regulation particularly of systems with
small number of gene responses. For large systems, there is a large number of gene responses
and the gene regulatory network can be realistically described with a set of deterministic ODEs.
Time delays are common and substantial in biochemical processes. They are essential for the
system and can protect it against transient loss of input signal, improve the accuracy of reading
the information and filter non-beneficial pulses. However, time delays are not always beneficial
as they may play a negative role in the stability of the gene network.

First, we will consider a deterministic model (without noise) following the works of Yildirim
and Mackey [8, 9, 10, 11]. The model is written in terms of a system of simultaneous first order
ODEs with time delays (DDEs) and is based on Michaelis-Menten enzyme kinetics. The full
model [8] consists of five DDEs describing the lactose system in e.coli of positive feedback. This
model is simplified [9], assuming a constant quantity of lactose L inside the cell (equilibrium
of internal and external cellular lactose) and ignoring the dynamics of permease (assumed as a
constant permease),

dM -

W = aMf(ATNI) _/YMMa (1)
dB o -

o = ose KB M., — BB, (2)
dA -

E = CYABh(L) - /3ABQ(A) —yaA. (3)

Here M is the mRNA concentration, n is the number of molecules of allolactose required to
inactivate the repressor R. The model takes into account the delays in the response of mRNA,
(-galactosidase and allolactose. The factor e 7#™ accounts for the dilution of A through growth
during the transcriptional period, where p is the bacterial growth rate, A,,, = A(t — 7as). The
description of the same system without time delays is achieved with 7 =0,Y = A, B, M. The
rate of change of M is a balance between a production term a,s f,

1+ K, (e_HTMATM)n
= . 4
f( TJM) K + Kl (e—MT]MATM)n ( )

The functions hA(L) and g(A) do not depend on time delays,

h(L) = KLL+L’ g(A) = KAA;A' (5)

The parameters of the system, K;,i = 1,2,L, ay,Y = A,B,M and (34, are deterministic
mass-action kinetic rate constants. K7 is the equilibrium constant for the repressor-allolactose
reaction, K = 1 4+ KoRyt, and Ry, is the total amount of repressor R. The loss of rate of
B is given by A4pB. Similarly, 75; and 44 represent the loss of rate of M and A respectively.
Y = (yy + p)Y is made up of degradation term ~yY and effective loss due to dilution pY for
Y = M, B, A. The values of these parameters are estimated experimentally in [12].
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The model was tested using the estimates for the parameters in [12]. Details of the numerical
and analytical solution are given in [9]. The solutions indicate that the steady states depend
on the intracellular lactose concentration L and growth rate p. We have further investigated
the analytical and numerical solution of this simplified model and analysed the range of values
for the parameters corresponding to a stable solution using Routh-Hurwitz criterium [4]. The
numerical solutions are obtained with Matlab (using Euler and Rounge-Kutta methods, dde23
routine and symbolic toolbox).

The steady state point (M., By, Ay), is depicted when the derivatives of M, B and A are
equal to zero, %4 =0, 48—y, % = 0. Applied to equations (1)-(3), this gives a condition

dt
for the steady state,
NAN R HTB
F(A) =0 A g JAIBIMET (6)
[A(L) - B2 g(A,)] asapan
oA

A graphical solution for n = 2 is illustrated on Figure 1 with initial conditions A = M =0, B = 1.
The dashed curve represents the left hand side, f(A.), of (6), while the right hand side, which is
a monotonically increasing function of L, is plotted for three values of L. Steady state exists for
intracellular lactose in the range 40uM < L < 55.4uM. The location of the steady state is given
by the intersection of the curves representing each side of (6). Depending on the value of L,
one, two or three steady states are possible for n = 2. For example, three steady states exist for
L = 40uM. The range of allolactose concentration is always positive, thus (L) — g—ﬁ g(Ay) >0,
which bounds the region where no steady states exist.

Lac operon
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Figure 2. Bistability of (-galactosidase
(uM) as a function of time (min) for various
initial values of B.

Figure 1. Steady states obtained by
graphical solution of (6), A (uM).

(-galactosidase regulatory pathway is the most essential of the regulatory mechanisms in the
lactose operon [1, 5, 6]. The concentration of 3-galactosidase as a function of time was simulated
and shows (Figure 2) that the steady states display bistability, in agreement with [8, 9].

The concentrations of mRNA and (-galactosidase are plotted on Figures 3 and 4 without
time delay and with time delay respectively with initial values M = 0, B = 1. mRNA levels
reach saturation faster then (3-galactosidase levels. B is more sensitive to time delays, which
also reduce the levels of concentration.

3. Stochastic correction
Gene expression is a complex process regulated at several stages in the synthesis of proteins.
Apart from the regulation of DNA transcription, RNA translation and post-translational
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Figure 3. M (uM) and B (uM) versus time  Figure 4. M (uM) and B (uM) versus time
(min) without time delay. (min) with time delay.

modification of proteins, gene expression is also part of the regulatory process. Gene regulation
is a stochastic process as it happens in living organisms and there are many fluctuations due to
delay of response and other processes taking place at the same time. For small systems such as
the lac, a stochastic model is more appropriate, as the gene responses are few and their nature
is probabilistic. We have adjusted the deterministic model using the Langevin approach [3, 7]
by adding a noise term to equations (1)-(3) to account for the stochastic behavior of the system.
Let Y = M,B,A and F is the function representing the right hand side of the equations

(1)-(3), N
= F(Y). (7)

We add a noise term, - -

i FY)+o 7 (8)
where W is independent random variable of Wiener process, which satisfies the conditions of this
process, namely W; — Wy ~ N (uo?) [14]. Here N'(uo?) is a normal distribution with expected
value (mean) p and variation o2, p and o are also known as drift and volatility respectively.
Thus, the stochastic differential equation (SDE) is

dY = F(Y)dt + odW (9)

We have used Euler-Maruyama method, which is a technique for approximate numerical solution
of SDE, and is a simple generalisation of the Euler method [15]. Let h = t;11 — t;, where
1 =0, ...., N,is the iterations step and N is the number of iterations. Then

Yiee =Y+ F(Y))h+ o ZVh (10)

where Z; are normally distributed random numbers (derivatives of a Wiener process) with mean
0 and variance 1. Applying to the model,

dM -

“dt = O‘Mf(ATM)_'VMM"')‘a (11)
dB

—- = asM =B+, (12)
dA -
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where \ = aZt\/E. These equations were solved with and without time delays. The solutions
for M and B, with initial conditions M = A = 0 and B = 1, and different noise terms are
illustrated in Figures 5 and 6 respectively. The fluctuations of M and B are clearly present, as
expected from the stochastic nature of the process. The levels of concentration are sensitive to
the noise. The fluctuations of mRNA concentration are above and below mRNA levels without
noise, while (§-gallactosidase concentration mainly decreases with time in the presence of the
noise term.

The effect of the stochasticity was investigated in [13], where different noise terms were
investigated experimentally and by simulation and the behaviour of the deterministic and
stochastic models compared. The conclusion of this work is that it is still unclear whether
the stochastic gene expression in the lac operon is detrimental or beneficial for the cells.
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Figure 5. mRNA with different noise, M  Figure 6. [(-gallactosidase with different
(uM). noise, B (uM).
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