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One-dimensional examples
Phase-plane techniques for two-dimensional systems

Example: a mathematical model of yeast glycolytic oscillations




Analyzing stability of ODE systems

Example: ageneric three-component repressive network

The scheme implies a set of
differential equations

d[A] _ k, (LAl -[AD Kk, [AIC]
dt [A]T_[A]"'Kpl [A]+Kk1

d[B] _k,. (Bl ~[BDLA]l k,,[B]

dt [B], -[B]+ K, [B]+ Ky,
Mogilner et al., Developmental Cell d [C] — kp3([c ]T _ [C ])[ B] _ kk3[C]
11:279-287, 2006 dt [C ]T -[C]+ K 03 [C]1+ K ‘3

Model parameters:
k..'s and K's for phosphorylation reactions
k..'s and K 's for dephosphorylations
total amounts of [A], [B], and [C]

The equations are solved using standard numerical techniques

ODE models

Two solutions to this system

Parameter set 1 Parameter set 2
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Parameter values greatly influence system behavior

We use tools of “dynamical systems” to understand different behaviors




Stability analysis of ODE systems

A one-dimensional example

Isolated cardiac myocyte
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Beginning with a myocyte at rest (-85 mV), Change to < -85 - positive dV/dt
simulate instantaneous change in voltage, Change to ~70 > negative dV/dt
Iting I, th Iting dV/dt "

resulting I,,, then resulting Change to >~-58 = positive dV/dt

Stability analysis of ODE systems

Instantaneous changes in membrane potential

10 dv/dt = -I,,,/C,, Change V, then integrate equations
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Deviations below -85 mV or between -85 and ~-58 mV result in areturn to the resting state.
This is a stable fixed point
Small deviations from -58 mV cause action potentials or return to the resting state.
This is an unstable fixed point

We will learn to analyze these more rigorously




Stability analysis of ODE systems

A two-dimensional example: Yeast glycolytic oscillations
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Tu et al., Science 310:1152-1158, 2005

Many mathematical models of this process have been developed
Bier, Bakker, & Westerhoff published a very simple one (Biophys. J. 78:1087-1093, 2000)

We will analyze stability using this example system

Stability analysis of ODE systems

Bier model of yeast glycolytic oscillations
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Default parameter values: V,, =0.36, k; =0.02, k, =6
K. =13 Kn =20

— [C]
— [ATP]

How can we understand the qualitatively different behavior?




Stability analysis of ODE systems
Phase-plane techniques for 2D systems
Instead of plotting [G] and [ATP] vs. time, plot [G] vs. [ATP]
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Stability analysis of ODE systems

d[ATP
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In 2D phase plane, direction determined by: [ d[G
dt

At any given location, the derivatives define a vector in the phase plane
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Summary

A "fixed point" of a dynamical system is a set of variables where all
derivatives are equal to zero.

A fixed point can be stable, meaning that after a small perturbation
away from the fixed point, the system will return to that fixed point.

With two-variable systems, it can be helpful to plot one variable versus
the other, in the "phase-plane.”
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