
Introduction to Dynamical Systems
Part 3
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Outline

Analyzing stability of ODE systems

What we mean by stability in general

One-dimensional examples

Phase-plane techniques for two-dimensional systems

Example:  a mathematical model of yeast glycolytic oscillations
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Analyzing stability of ODE systems
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The equations are solved using standard numerical techniques

Example:  a generic three-component repressive network
The scheme implies a set of 

differential equations
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Mogilner et al., Developmental Cell
11:279–287, 2006

Model parameters:
kcat’s and Km’s for phosphorylation reactions
kcat’s and Km’s for dephosphorylations
total amounts of [A], [B], and [C]

ODE models

Parameter set 1

Two solutions to this system

Parameter set 2

Parameter values greatly influence system behavior

We use tools of “dynamical systems” to understand different behaviors
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Stability analysis of ODE systems
A one-dimensional example

Isolated cardiac myocyte

Beginning with a myocyte at rest (-85 mV), 
simulate instantaneous change in voltage, 

resulting Iion, then resulting dV/dt
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Change to < -85  positive dV/dt

Change to ~-70  negative dV/dt

Change to >~-58  positive dV/dt

Fixed points

Stability analysis of ODE systems
Instantaneous changes in membrane potential

dV/dt = -Iion/Cm

Deviations below -85 mV or between -85 and ~-58 mV result in a return to the resting state.
This is a stable fixed point

We will learn to analyze these more rigorously

V (mV)

d
V

/d
t

(m
V

/m
s

)

-100 -90 -80 -70 -60
-4

-2

0

2

4

6

8

10
Change V, then integrate equations
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Small deviations from -58 mV cause action potentials or return to the resting state. 
This is an unstable fixed point
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Stable fixed point

Unstable fixed point



Stability analysis of ODE systems
A two-dimensional example: Yeast glycolytic oscillations

Many mathematical models of this process have been developed
Bier, Bakker, & Westerhoff published a very simple one (Biophys. J. 78:1087-1093, 2000)

We will analyze stability using this example system

Tu et al., Science 310:1152-1158, 2005
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Stability analysis of ODE systems
Bier model of yeast glycolytic oscillations

How can we understand the qualitatively different behavior?
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glucose transport phosphofructokinase
ATPases

Default parameter values:  Vin = 0.36, k1 = 0.02, kp = 6 

Km = 20Km = 13

[G]
[ATP]
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Stability analysis of ODE systems
Phase-plane techniques for 2D systems

Instead of plotting [G] and [ATP] vs. time, plot [G] vs. [ATP]

[G] and [ATP] oscillate 
indefinitely in a “stable limit 

cycle”
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[G] and [ATP] converge to a 

“stable fixed point”

Km = 20Km = 13
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Stability analysis of ODE systems
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At any given location, the derivatives define a vector in the phase plane



Summary
A "fixed point" of a dynamical system is a set of variables where all 

derivatives are equal to zero.

A fixed point can be stable, meaning that after a small perturbation 

away from the fixed point, the system will return to that fixed point.

With two-variable systems, it can be helpful to plot one variable versus 

the other, in the "phase-plane."
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