Волгоградский государственный медицинский университет

Кафедра патологической анатомии

Лекция 1 (часть 1)
ПАТОЛОГИЧЕСКАЯ АНАТОМИЯ:
СОДЕРЖАНИЕ, ЗАДАЧИ, ОБЪЕКТЫ И
МЕТОДЫ ИССЛЕДОВАНИЯ.

ПОВРЕЖДЕНИЕ.
ПАТОЛОГИЯ КЛЕТКИ.
ДИСТРОФИИ.

Стоматологический факультет

Патологическая анатомия

- одна из фундаментальных дисциплин, задачей которой является изучение механизмов возникновения и структурных проявлений заболеваний, что необходимо для усвоения клинических дисциплин.

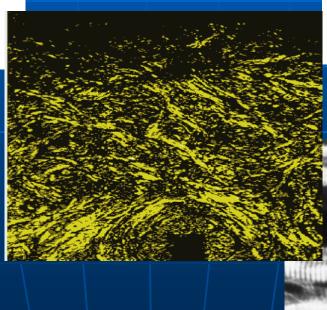
Структура патологической анатомии:

- общая часть,
- частная патологическая анатомия и
 - клиническая морфология.
- Общая часть изучает общие патологические процессы, закономерности их возникновения в органах и тканях при различных заболеваниях.
- Патологические процессы: некроз, нарушение кровообращения, воспаление, компенсаторные воспалительные процессы, опухоли, дистрофии, патология клетки.
- **Частная патологическая анатомия** изучает материальный субстрат болезни, т. е. является предметом нозологии.
- Нозология учение о болезни, предусматривает знание этиологии, патогенеза, проявления и номенклатуры болезней, их изменчивости, а также построения диагноза, принципов лечения и профилактики.

Задачи патологической анатомии:

- 1) изучение этиологии заболевания (причины и условия болезни);
- 2) изучение патогенеза заболевания (механизм развития болезни);
- 3) изучение морфологии заболевания, т. е. структурные изменения в организме и тканях;
- 4) изучение морфогенеза заболевания, т. е. диагностические структурные изменения;
- 5) изучение патоморфоза заболевания (стойкое изменение клетки и морфологические болезни под влиянием лекарственных препаратов медикаментозный метаморфоз, а также под влиянием условий внешней среды естественный метаморфоз);
- 6) изучение осложнений заболеваний, патологические процессы которых не являются обязательными проявлениями болезни, но возникают и ухудшают его и нередко приводят к летальному исходу;
- 7) изучение исходов заболевания;
- 8) изучение танатогенеза (механизма смерти);
- 9) оценка функционирования и состояния поврежденных органов.

Объекты изучения патологической анатомии:

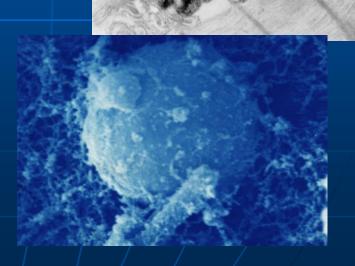

- 1. Операционно-биопсийный материал;
- 2. Аутопсийный материал;
- з. Ткани и органы от экспериментальных животных.

Методы исследования в патологической анатомии

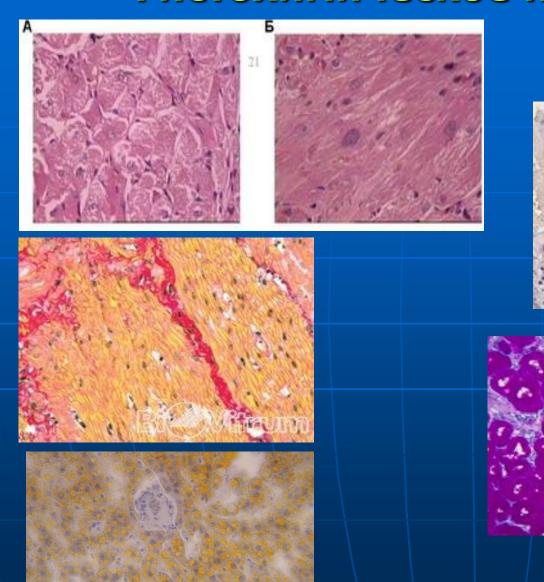
- 1. Макроскопическое исследование.
- 2. Микроскопическое исследование:
 - а) светооптическое исследование;
 - б) поляризационная микроскопия;
 - в) люминесцентная микроскопия;
 - г) гистохимическое исследование;
 - д) иммуногистохимическое исследование.
- 3. Цитологическое исследование.
- 4. Электронная микроскопия.
- 5. Методы молекулярной биологии:
 - a) гибридизация in situ (выявление нуклеиновых кислот);
 - б)проточная цитометрия;
 - в) гисторадиоавтография
- 6. Исследование хромосом.

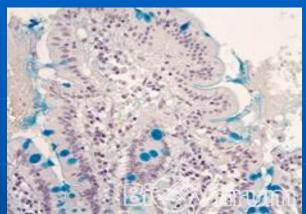
Световая/поляризационная микроскопия

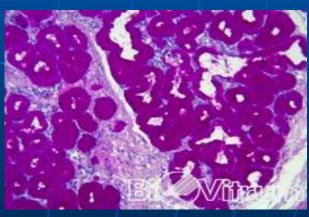
Люминесцентная микроскопия

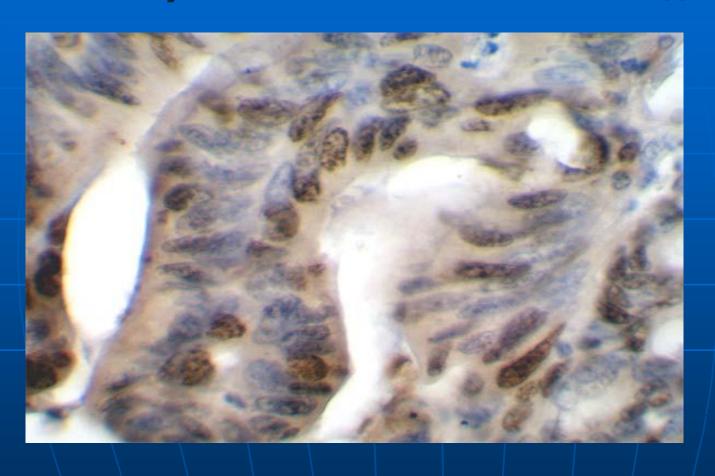

Люминесцентная микрофотография макрофага, внутри которого - фагоцитированные бактерии, излучающие красное свечение (обработка акридиновым оранжевым).

Электронная микроскопия (просвечивающий, растровый, сканирующий ЭМ)








Гистохимическое исследование

Иммуногистохимическое исследование

Уровни исследования в патологической анатомии:

1. организменный,

2. органный,

з. системный,

4. тканевой,

5. клеточный,

6. молекулярный.

ПОВРЕЖДЕНИЕ (АЛЬТЕРАЦИЯ)

■ Повреждение или альтерация (от лат. alteratio - изменение) - изменения структуры клеток, межклеточного вещества, тканей и органов, которые сопровождаются снижением уровня их жизнедеятельности или ее прекращением.

Причины повреждения клеток

- 1. Гипоксия (ишемия при атеросклерозе и тромбозе; сердечно-сосудистая недостаточность; анемии; отравления СО2)
- 2. Физические агенты (механическая травма, колебания температуры окружающей среды, колебания атмосферного давления, радиация, эл.ток)
- 3. Химические агенты и лекарства.
- 4. Инфекционные агенты.
- 5. Иммунные реакции.
- 6. Генетические нарушения.

Механизмы повреждения клеток

- 1. При недостаточном поступлении кислорода в ткани образование свободных радикалов кислорода => свободно-радикальное пероксидное окисление липидов => разрушительное действие на клетки.
- 2. Нарушение гомеостаза кальция.
- 3. Потеря митохондриями пиридиннуклеотидов и последующая недостаточность АТФ, а также снижение синтеза АТФ (характерно как для ишемического, так и для токсического повреждения клеток).
- 4. Ранняя потеря плазматической мембраной избирательной проницаемости.

Основные формы повреждения клеток

- 1. Ишемическое и гипоксическое повреждение
- 2. Повреждение, вызванное свободными радикалами, включая активированный кислород
- 3. Токсическое повреждение.

Классификации повреждения

- 1) по причинным факторам экзогенное (биологическое, в том числе вызванное бактериями, вирусами, микоплазмами, простейшими; физическое, химическое) и эндогенное (гипоксия, интоксикация, иммунное повреждение);
- 2) характеру воздействия повреждающего фактора прямое и непрямое;
- 3) по тяжести процесса обратимое и необратимое;
- 4) по значению для организма патологическое и физиологическое;
- 5) по распространенности числу и объему поврежденных структур тотально-клеточные и парциальные (отдельных структур).

Виды повреждения клеток

Первичные

(наследственные)

Специфические

(только при данных воздействиях)

Тотальноклеточные

Обратимые

(отек клетки, набухание митохондрий)

Вторичные

(приобретенные)

Неспецифические

(при различных воздействиях)

Парциальные

(отдельных структур)

Необратимые

(фрагментация, некроз, апоптоз)

Уровни проявления повреждения:

- 1) молекулярный (повреждение клеточных рецепторов, молекул ферментов, нуклеиновых кислот вплоть до их дезинтеграции);
- 2) **субклеточный** ультраструктурном (повреждение митохондрий, ретикулума, мембран и других ультраструктур вплоть до их деструкции);
- 3) клеточный (различные дистрофии из-за нарушения разных видов обмена с возможным развитием некроза по типу рексиса или лизиса клетки);
- 4) тканевой и органный (дистрофические изменения в большинстве клеток и строме с возможным развитием некроза (по типу инфаркта, секвестра и др.), в том числе уровень тканевых комплексов или гистионов, включающих в свой состав сосуды микро-циркуляторного русла (артериола, капилляры, венула) и питаемые ими клетки, паренхимы, соединительную ткань и терминальные нервные окончания.;
- 5) **организменный** (болезнь с возможным смертельным исходом).

Морфологические проявления повреждения:

- 1. Дистрофия,
- 2. Некроз,
- з. Апоптоз.

ДИСТРОФИИ

Дистрофии - морфологическое выражение нарушений тканевого (клеточного) обмена, ведущих к структурным изменениям.

Причина развития дистрофий - нарушения клеточных или внеклеточных механизмов трофики:

- 1) расстройства ауторегуляции клетки, ведущие к энергетическому ее дефициту и к нарушению ферментативных процессов в клетке; в таких случаях ферментопатия (приобретенная или наследственная) становится основным патогенетическим звеном и выражением дистрофии;
- 2) нарушения работы транспортных систем трофики, обусловливающие гипоксию, которая становится ведущей в патогенезе дисциркуляторных дистрофий;
- 3) расстройства эндокринной или нервной регуляции трофики, лежащие в основе эндокринных и нервных (церебральных) дистрофий.


Механизмы развития дистрофий:

- 1) инфильтрация поступление в клетку ряда веществ;
- 2) извращенный синтез синтез необычных по количеству веществ или аномальных продуктов;
- 3) **трансформация** переход одного класса веществ в другой;
- 4) декомпозиция (фанероз) появление в клетках белков и липидов при распаде липопротеидных комплексов мембран.

Классификации дистрофий:

- 1) в зависимости от преобладания морфологических изменений в специализированных элементах паренхимы или в строме:
- 1. паренхиматозные дистрофии,
- 2. стромально-сосудистые (мезенхимальные) дистрофии,
- з. смешанные дистрофии;
- 2) по преобладанию нарушений того или иного вида обмена:
- белковые дистрофии;
- 2. жировые дистрофии;
- з. углеводные дистрофии;
- 4. минеральные дистрофии;
- 3) в зависимости от влияния наследственных факторов:
- 1. приобретенные дистрофии;
- 2. наследственные дистрофии;
- 4) по распространенности процесса:
- 1. общие дистрофии;
- 2. местные дистрофии.

Дистрофии

Смешанные д. → Накопление пигментов (экзогенных и эндогенных)

Углеводные

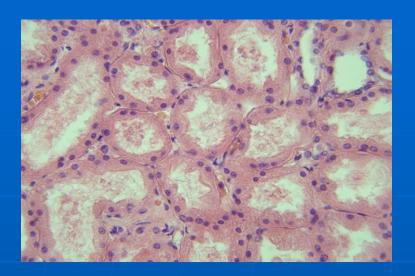
Тезаурисмозы

Тезаурисмоз - наследственно обусловленный дефект ферментов, преимущественно лизосом, осуществляющих в норме катаболизм тех или иных веществ в организме, в результате чего в клетках и тканях накапливаются эндогенные продукты неполного расщепления.

- Заболевание чаще наследуется по аутосомно-рецессивному типу и проявляется, как правило, в детском возрасте.
- Чаще проявляется у детей уже в первый год жизни, сопровождаются, как правило, нарастающими симптомами поражения ЦНС, отсталостью общего физического развития, гепато- и спленомегалией.
- Прогноз неблагоприятный.
- Продукты неполного расщепления при болезных накопления откладываются в клетках (нервных, мышечных, эпителиальных), активно поглощаются микро- и макрофагами или накапливаются в межуточном веществе (в белой субстанции головного и спинного мозга, в межуточном веществе хрящей, в интерстициальной соединительной ткани).

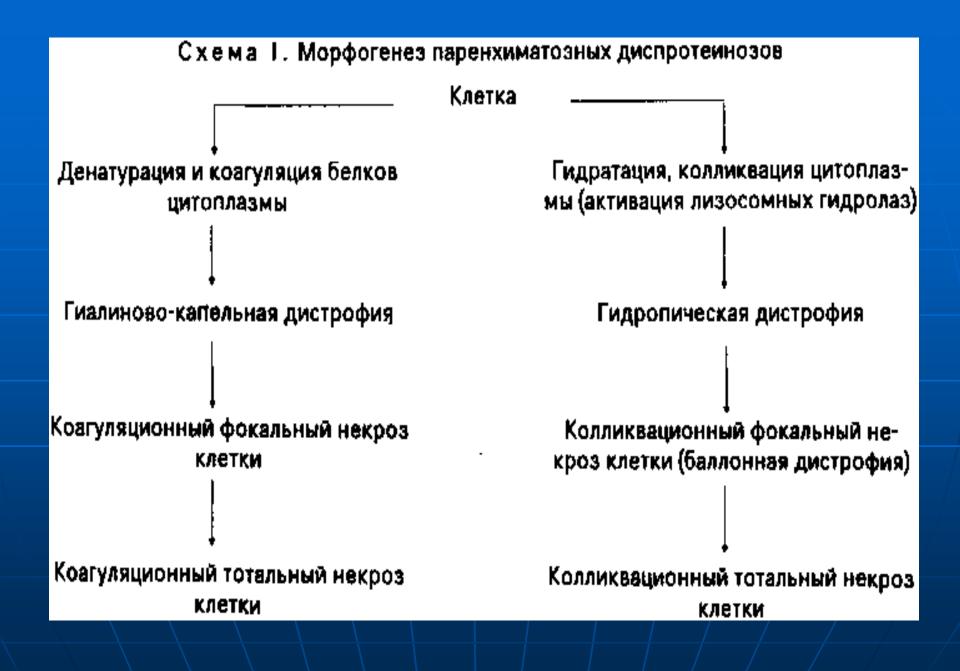
ПАРЕНХИМАТОЗНЫЕ ДИСТРОФИИ

Белковые


Жировые

Углеводные

ПАРЕНХИМАТОЗНЫЕ ДИСТРОФИИ


ПАРЕНХИМАТОЗНЫЕ БЕЛКОВЫЕ ДИСТРОФИИ:

- 1. Зернистая дистрофия.
- 2. Гиалиново-капельная дистрофия.
- 3. Гидропическая дистрофия.
- 4. Роговая дистрофия (гиперкератоз, лейкоплакия).

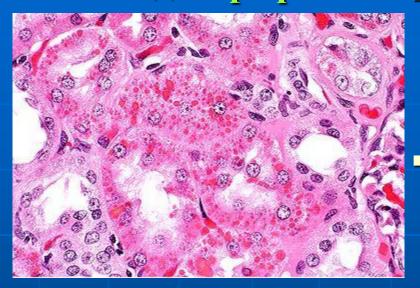
Зернистая дистрофия

- Причины: различные факторы, приводящие к энергетическому дефициту клетки (нарушения крово- и лимфообращения, инфекции и интоксикации).
- Локализация развития процесса: почки, печень, сердце.
- Микро-: в цитоплазме клеток паренхиматозных органов большое количество эозинофильных зерен.
- Макро- орган увеличен в объеме, имеет дряблую консистенцию, на разрезе ткань выбухает, становится тусклой.
- электронно-микроскопическое и гистоферментохимическое изучение "зернистой дистрофии" показало, что в ее основе не накопление белка в цитоплазме, а гиперплазия ультраструктур клеток паренхиматозных органов как выражение функционального напряжения этих органов в ответ на различные воздействия.

Гиалиново-капельная дистрофия

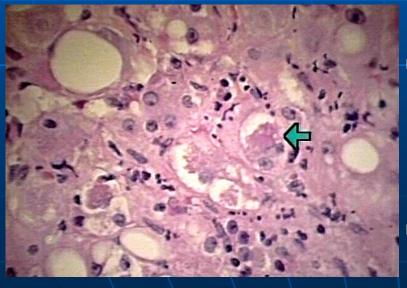
- появление в цитоплазме крупных гиалиноподобных белковых капель, сливающихся между собой и заполняющих тело клетки → деструкция ультраструктурных элементов клетки.
- В ряде случаев завершается фокальным коагуляционным некрозом клетки.
- часто в почках, редко в печени и совсем редко в миокарде.

В почках:


- накопление гиалиновых капель в нефроцитах;
- деструкция митохондрий, эндоплазматической сети, щеточной каемки.
- В основе недостаточность вакуолярно-лизосомального аппарата эпителия проксимальных канальцев, в норме реабсорбирующего белки.
- Макроскопически картина основного заболевания.

Гиалиново-капельная дистрофия

В печени:


- в гепатоцитах гиалиноподобные тельца (тельца Мэллори), которые состоят из фибрилл особого белка алкогольного гиалина.
- Образование этого белка и телец Мэллори проявление извращенной белково-синтетической функции гепатоцита.
- Внешний вид печени различен; изменения характерны для тех ее заболеваний, при которых встречается гиалиново-капельная дистрофия.

Гиалиново-капельная дистрофия

Причины:

- в почках при нефротическом синдроме, гломерулонефрите, амилоидозе, парапротеинемическом нефрозе, диабетической гломерулопатии;
- в печени тельца Маллори при алкогольном гепатите, первичном билиарном и индийском детском циррозах печени, гепатоме, холестазах.

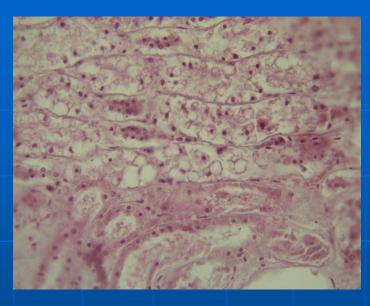
- Микро-: в цитоплазме клеток паренхиматозных органов появляются гиалиноподобные ацидофильные белковые глыбки, сливающиеся между собой.
- Этот вид дистрофии необратимый ведет к коагуляционному некрозу клетки.

Гидропическая (водяночная, вакуольная) дистрофия

– Причины:

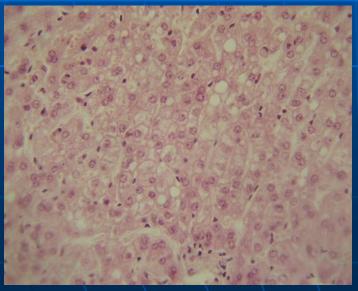
- 1. гипоксические, тепловые и холодовые повреждения,
- 2. недостаточное питание,
- з. ионизирующее излучение,
- 4. бактериальные токсины (дифтерийного, тифозного и стрептококкового),
- 5. ядовитые вещества (фосфора, мышьяка, четыреххлористого углерода),
- 6. вирусные инфекции (особенно натуральная оспа, вирусный гепатит).

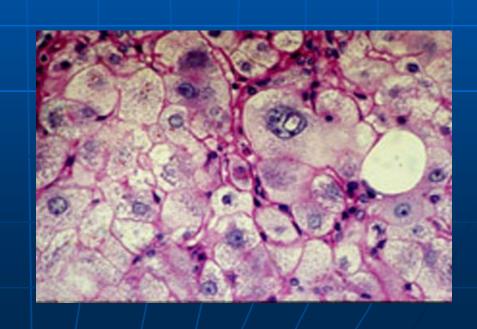
- В почках это повреждение гломерулярного фильтра (гломерулонефрит, амилоидоз, сахарный диабет), что ведет к гиперфильтрации и недостаточности ферментной системы базального лабиринта нефроцитов, в норме обеспечивающей реабсорбцию воды; поэтому гидропическая дистрофия нефроцитов так характерна для нефротического синдрома.
- В печени при вирусном и токсическом гепатитах, нередко причина печеночной недостаточности.
- В эпидермисе инфекция (оспа), отек кожи различного механизма.
- Вакуолизация цитоплазмы может быть проявлением
- физиологической деятельности клетки, что отмечается, например, в ганглиозных клетках центральной и периферической нервной системы.


Гидропическая (водяночная, вакуольная) дистрофия

- Механизм развития сложен и отражает нарушения водно-электролитного и белкового обмена, ведущие к изменению коллоидно-осмотического давления в клетке.
- нарушение проницаемости мембран клетки, сопровождающееся их распадом.
- => закисление цитоплазмы, активация гидролитических ферментов лизосом, которые разрывают внутримолекулярные связи с присоединением воды.

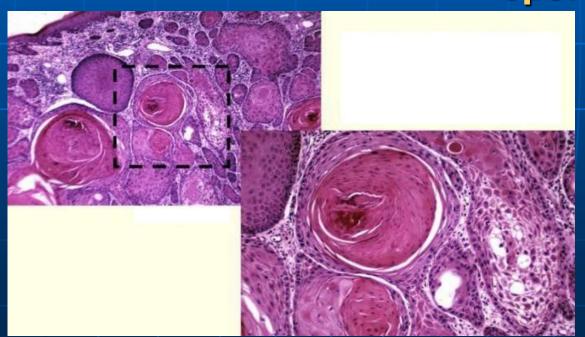
Гидропическая (водяночная, вакуольная) дистрофия


- Локализация: эпителий канальцев почек, кожа, гепатоциты, нервные и мышечные клетки, клетки коркового вещества надпочечников.
- Микро- в цитоплазме клеток вакуоли, не содержащие жира и гликогена, наполненные жидкостью.
- Крайнее выражениее гидропической дистрофии баллонная, при которой клетка превращается в огромную вакуоль, заполненную жидкостью,
- исход колликвационный некроз.

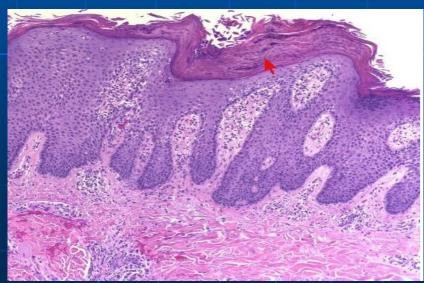

Гидропическая дистрофия

Гидропическая дистрофия почки

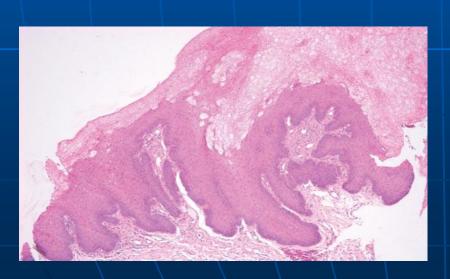
Гидропическая дистрофия печени


- Роговая дистрофия, или патологическое ороговение, -избыточное образование рогового вещества в ороговевающем эпителии (гиперкератоз, ихтиоз) или
- образованием рогового вещества там, где в норме его не бывает (патологическое ороговение на слизистых оболочках, или лейкоплакия; образование "раковых жемчужин" в плоскоклеточном раке).
- может быть местным или распространенным.
- Причины: нарушение развития кожи, хроническое воспаление, вирусные инфекции, авитаминозы и др.

- Исход: устранение вызывающей причины в начале процесса к восстановлению ткани, однако в далеко зашедших случаях гибель клеток.
- Значение: определяется ее степенью, распространенностью и длительностью.
- Длительно существующее патологическое ороговение слизистой оболочки (лейкоплакия) может явиться источником развития раковой опухоли.
- Врожденный ихтиоз резкой степени, как правило, несовместим с жизнью.


Папиллома с гиперкератозом,

Плоскоклеточный ороговевающий рак



Гиперкератоз

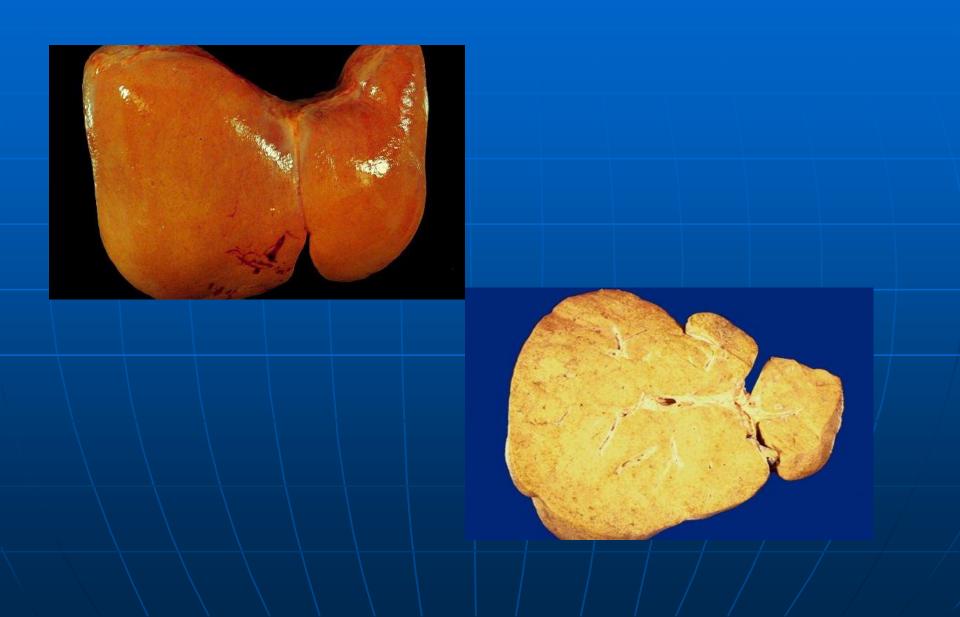
Лейкоплакия

Роговая дистрофия: ихтиоз (синдром Арлекина)

Наследственные дистрофии, связанные с нарушением обмена аминокислот

Название	Дефицит фермента	Локализация накоплений аминокислоты
Цистиноз	Неизвестен	Печень, почки, селезенка, глаза, костный мозг, лимфатические узлы, кожа
Тирозиноз	Тирозинаминотранс фераза или оксидаза параоксифенил-пировиноградной кислоты	Печень, почки, кости
Фенил- пировиноградная олигофрения	Фенилаланин-4- гидроксилаза	Нервная система, мышцы, кожа, кровь, моча

ПАРЕНХИМАТОЗНЫЕ ЖИРОВЫЕ ДИСТРОФИИ (ЛИПИДОЗЫ)

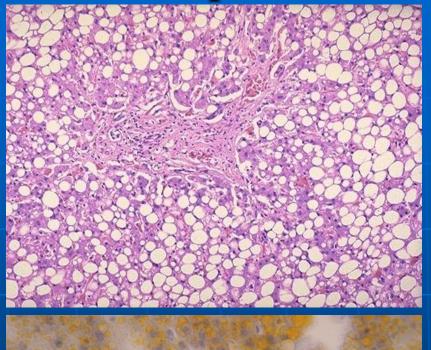

- Паренхиматозные жировые дистрофии (липидозы), характеризующиеся нарушением обмена жиров в цитоплазме, морфологически проявляются увеличением их количества в клетках, где они встречаются в нормальных условиях либо обычно не встречаются, а также накоплением жиров необычного химического состава.
- наиболее часто в печени, миокарде и почках.
- преобладание морфогенетического механизма жировой дистрофии (декомпозиция, инфильтрация, трансформация и извращенный синтез) зависит от причины, вызвавшей дистрофию, и структурно-функциональных особенностей органа.
- Как правило, речь идет о смене одного механизма другим или об их сочетании.

- встречается особенно часто.
- О жировой печени можно говорить лишь в тех случаях, когда более 50% гепатоцитов содержит жир преимущественно нейтрального характера.
- Непосредственная причина стойкого накопления нейтральных жиров в печени - дезорганизация ферментативных процессов на определенном этапе обмена липидов.

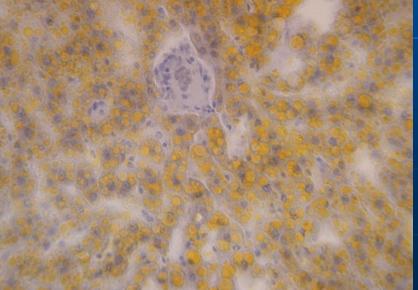
- 1) при чрезмерном поступлении в клетку жирных кислот или повышенном их синтезе в гепатоците, что создает относительный дефицит ферментов;
- 2) при воздействии на клетку токсических веществ, блокирующих окисление жирных кислот, синтез апопротеинов;
- 3) при недостаточном поступлении в клетки печени аминокислот, необходимых для синтеза фосфолипидов и липопротеидов.

Основные причины:

- 1. состояния, характеризующиеся высоким уровнем жирных кислот в плазме крови (алкоголизм, сахарный диабет, общее ожирение, гормональные расстройства),
- 2. воздействия на гепатоциты токсических веществ (таких, как этанол, четыреххлористй углерод, фосфор, хлороформ и др.),
- з. нарушенное питание в связи с недостатком белка в пище или заболеваниях желудочно-кишечного тракта.
- 4. генетический дефект ферментов, участвующих в жировом обмене (приводит к развитию наследственных липидозов).


При гистологическом исследовании отложения жиров в печени могут быть очаговыми или диффузными.

В зависимости от размеров капель жиров различают мелко-, средне- и крупнокапельную жировую дистрофию гепатоцитов.


Гистохимические окраски на жиры:

Судан III – красно-оранжевый цвет, Судан IV, V – черный цвет,

Сульфат нильского голубого – синий или красный.

Окраска гематоксилином и эозином.

Окраска Суданом III.

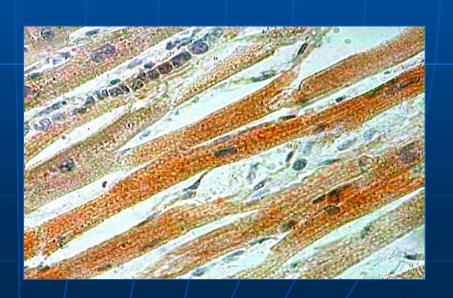
Жировая дистрофия миокарда

Причины:

- гипоксия (особенно при пернициозной анемии и хронической сердечно-сосудистой недостаточности),
- дифтерийная и алкогольная интоксикации,
- отравления фосфором, хлороформом, мышьяком.

Основные механизмы появление липидов в миокарде:

- повышенное поступление жирных кислот в кардиомиоциты (как правило, в связи с энергетическим дефицитом),
- нарушение обмена жиров в этих клетках;
- фанероз распад липопротеидных комплексов внутриклеточных структур.


Жировая дистрофия миокарда

- Микроскопическая картина: мелкие капли нейтрального жира в кардиомиоцитах.
- чаще носит очаговый характер; при этом кардиомиоциты, содержащие жир, расположены преимущественно по ходу венозного колена капилляра и мелких вен.
- Макроскопическая картина: сердце приобретает дряблую консистенцию, камеры его растянуты, на разрезе миокард имеет желтоватый цвета, со стороны эндокарда, особенно в области сосочковых мышц, видна желтовато-белая исчерченность ("тигровое сердце").

Жировая дистрофия миокарда

• «Тигровое» сердце.

Жировая дистрофия почек

- В физиологических условиях нейтральные жиры могут обнаруживаться в эпителии узкого сегмента и собирательных трубочек.
- При развитии жировой дистрофии почек липиды (нейтральные жиры, холестерин и его эфиры, фосфатиды) появляются в эпителии главных отделов канальцев.
- Наиболее частая причина нефротический синдром или хроническая почечная недостаточность.
- Кроме того, липиды могут накапливаться в эпителии канальцев почки при сахарном диабете, под действием фосфора, четыреххлористого углерода, афлатоксина В1.

ПАРЕНХИМАТОЗНЫЕ УГЛЕВОДНЫЕ ДИСТРОФИИ

Углеводы, определяемые в клетках и тканях:

- 1. полисахариды, из которых в животных тканях выявляются лишь **гликоген**,
- 2. гликозаминогликаны (мукополисахариды) и
- з. гликопротеиды.
- Гликозаминогликаны нейтральные, прочно связанные с белками, и кислые, к которым относятся гиалуроновая, хондроитинсерная кислоты и гепарин.
- Кислые гликозаминогликаны как биополимеры способны вступать в непрочные соединения с рядом метаболитов и осуществлять их транспорт.
- Гликопротеиды муцины и мукоиды. Муцины составляют основу слизи, продуцируемой эпителием слизистых оболочек и железами, мукоиды входят в состав многих тканей.
- Полисахариды, гликозаминогликаны и гликопротеиды выявляются ШИК-реакцией.

Углеводные дистрофии, связанные с нарушением обмена гликогена

- Основные запасы гликогена в печени и скелетных мышцах.
- Гликоген печени и мышц расходуется в зависимости от потребностей организма (лабильный гликоген).
- Гликоген нервных клеток, проводящей системы сердца, аорты, эндотелия, эпителиальных покровов, слизистой оболочки матки, соединительной ткани, эмбриональных тканей, хряща и лейкоцитов является необходимым компонентом клеток, и его содержание не подвергается заметным колебаниям (стабильный гликоген).
- деление гликогена на лабильный и стабильный условно.
- Регуляция обмена углеводов нейроэндокринным путем.
- Основная роль принадлежит гипоталамической области, гипофизу (АКТГ, тиреотропный, соматотропный гормоны), β-клеткам поджелудочной железы (инсулин), надпочечникам (глюкокортикоиды, адреналин) и щитовидной железе.

Углеводные дистрофии, связанные с нарушением обмена гликогена

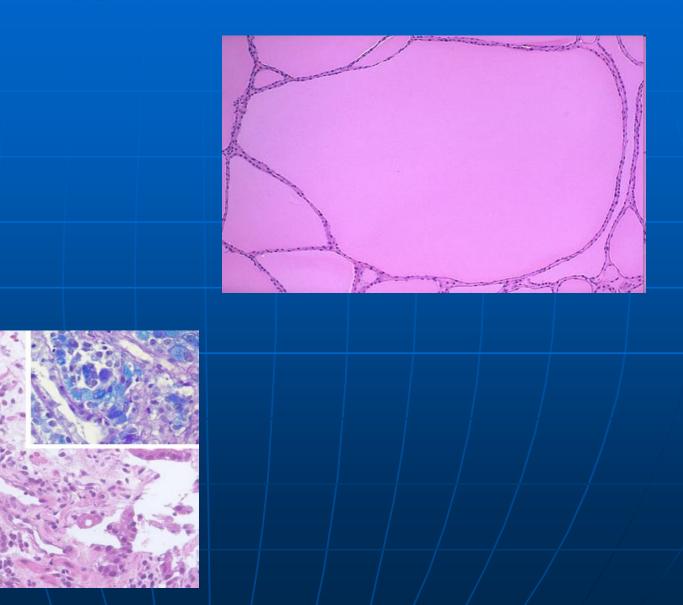
Нарушения содержания гликогена:

- 1. уменьшение количества гликогена в тканях,
- 2. увеличение количества гликогена в тканях,
- з. Появление гликогена там, где он обычно не выявляется.
- Эти нарушения наиболее ярко выражены при сахарном диабете и при наследственных углеводных дистрофиях - гликогенозах.

Углеводные дистрофии, связанные с нарушением обмена гликогена Сахарный диабет

- развитие заболевание связано с патологией (β клеток островков) поджелудочной железы,
- происходит недостаточное использование глюкозы тканями, увеличение ее содержания в крови (гипергликемия) и выведение с мочой (глюкозурия).
- резкое уменьшение тканевых запасов гликогена (в печени - нарушение синтеза гликогена инфильтрации печени жирами - жировая дистрофия печени; при этом в ядрах гепатоцитов появляются включения гликогена, они становятся светлыми ("дырчатые", "пустые", ядра).

Углеводные дистрофии, связанные с нарушением обмена гликогена


Сахарный диабет

- глюкозурия характерные изменения почек при диабете: гликогенная инфильтрация эпителия канальцев (узкого и дистального сегментов).
- Эпителий высокий, со светлой пенистой цитоплазмой; зерна гликогена видны и в просвете канальцев (полимеризация глюкозы в канальцевом эпителии при резорбции богатого глюкозой ультрафильтрата плазмы(.
- Изменения в клубочках капиллярные петли, базальная мембрана значительно более проницаемая для сахаров и белков плазмы интеркапиллярный (диабетический) гломерулосклероз (как одно из проявлений диабетической микроангиопатии)

Углеводные дистрофии, связанные с нарушением обмена гликопротеидов

- Слизистая дистрофия накопление муцинов и мукоидов, называемых также слизистыми или слизеподобными веществами при нарушении обмена гликопротеидов в клетках или в межклеточном веществе.
- Микроскопическая картина: усиленное слизеобразование, изменения физико-химических свойств слизи.
- Гибель и десквамация секретирующих клеток, обтурация слизью выводные протоки желез - развитие кист. Нередко в этих случаях - присоединение воспаления.
- при закрытии просветов бронхов слизью возникновение ателектазов и очагов пневмонии.
- Иногда в железистых структурах накапливается не истинная слизь, а слизеподобные вещества (псевдомуцины). Эти вещества могут уплотняться и принимать характер коллоида. Тогда говорят о коллоидной дистрофии, которая наблюдается, например, при коллоидном зобе.
- Причины разнообразны, но чаще воспаление слизистых оболочек в результате действия различных патогенных раздражителей (*Катаральное воспаление*); образование слизи в клетках опухоли.

ПАРЕНХИМАТОЗНЫЕ УГЛЕВОДНЫЕ ДИСТРОФИИ

СТРОМАЛЬНО-СОСУДИСТЫЕ ДИСТРОФИИ

 Стромально-сосудистые (мезенхимальные) дистрофии развиваются в результате нарушений обмена в соединительной ткани и выявляются в строме органов и стенках сосудов.

Стромально-сосудистые диспротеинозы:

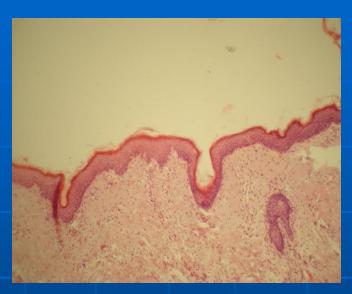
- мукоидное набухание,
- фибриноидное набухание,
- гиалиноз,
- амилоидоз.
- Мукоидное набухание, фибриноидное набухание и гиалиноз могут быть последовательными стадиями дезорганизации соединительной ткани (напр., при ревматических болезнях).

Мукоидное набухание

- Поверхностная и обратимая дезорганизация соединительной ткани.
- Характеризуется накоплением в парапластической субстанции (в основном веществе соединительной ткани) гликозаминогликанов (преимущественно гиалуроновой кислоты), что приводит к повышению сосудисто-тканевой проницаемости и выходу мелкодисперсных плазменных белков - альбуминов.
- Механизм развития инфильтрация.
- чаще встречается в стенках артериол и артерий, клапанах сердца, пристеночном эндокарде.

Мукоидное набухание

- Макроскопическая картина: орган или ткань обычно не изменены.
- Микроскопическая картина: феномен метахромазии, особенно с толуидиновым синим: в фокусах мукоидного набухания видно накопление гликоаминогликанов, дающих метахроматичное (сиреневое) окрашивание.
- Электронно-микроскопическая картина: расширенные межфибриллярные пространства, содержащие зернистые белковые массы; коллагеновые волокна сохранены, лишь местами выявляется некоторое их разволокнение.
- обратимый процесс, однако часто переходит в необратимый процесс глубокой дезорганизации соединительной ткани - фибриноидное набухание.


Фибриноидное набухание

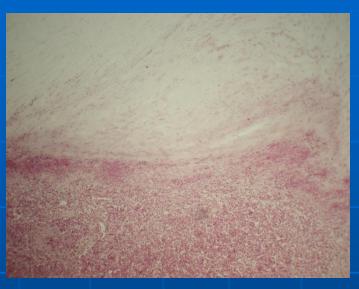
- В основе деструкция основного вещества и волокон соединительной ткани, сопровождающаяся резким повышением сосудистой проницаемости и выходом грубодисперсных плазменных белков, в первую очередь фибриногена с последующим превращением в фибрин.
- Характерно образование вещества фибриноида, в формировании которого помимо деструкции коллагеновых волокон, большую роль играет состояние основного вещества, прежде всего его гликозаминокликанов, которые способны осаждаться щелочными белками, высвобождающимися при повреждении волокнистых и клеточных струк-тур соединительной ткани.
- Кроме того в построении фибрионида принимают участие и белки плазмы, в первую очередь фибриноген с последующим превращением в фибрин.

Фибриноидное набухание

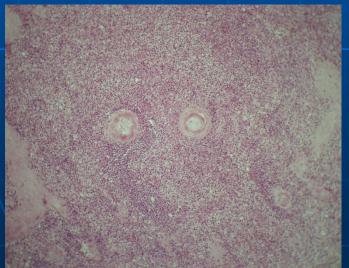
- Механизм развития инфильтрация и декомпозиция.
- Электронно-микросокпическая картина: в зоне фибриноидных изменений деструкция коллагеновых волокон и фибрин.
- Процесс необратимый, завершается фибриноидным некрозом, гиалинозом, склерозом.

Фибриноидное набухание

Окраска гематоксилином и эозином


 Окраска пикрофуксином по Ван Гизону

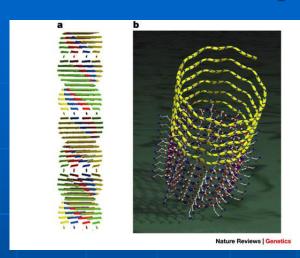
- Характеризуется накоплением в тканях полупрозрачных плотных масс, напоминающих гиалиновый хрящ.
- Возникает в исходе фибриноидного набухания, плазморрагии, склероза, некроза.
- Гиалин сложный фибриллярный белок.
- Механизм образования гиалина: разрушение волокнистых структур и пропитывание их фибрином и другими плазменными компонентами (глобулинами, бета-липопротеидами, иммунными комплексами и пр.).

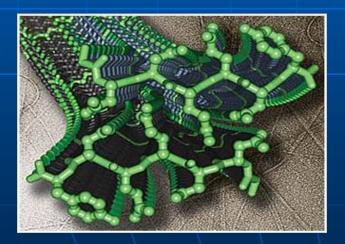

- гиалиноз собственно соединительной ткани;
- гиалиноз сосудов;
- оба эти вида гиалиноза могут быть распространенными и местными.
- Пример местного гиалиноза собственно соединительной ткани, развившегося в исходе мукоидного набухания и фибриноидных изменений, - гиалиноз створок клапанов сердца при ревматизме (ревматический порок сердца).
- Макроскопическая картина: сердце увеличено, полости желудочков расширены. Створки митрального клапана плотные, белесоватого цвета, сращены между собой и резко деформированы. Атриовентрикулярное отверстие сужено. Хордальные нити утолщены и укорочены.

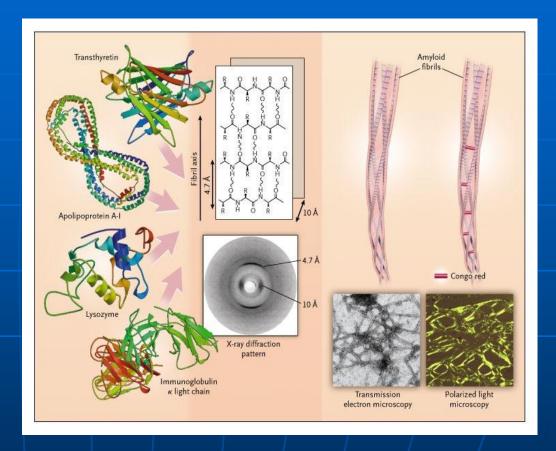
Виды сосудистого гиалина:

- а) простой гиалин созникает вследствие плазморрагии неизмененных компонентов плазмы (чаще встречается при гипертонической болезни, атеросклерозе);
- б) липогиалин содержит липиды и бета-липопротеиды (наиболее характерен для сахарного диабета);
- в) сложный гиалин строится из иммунных комплексов, фибрина и разрушающихся структур (характерен для болезней с ммунопатологическими нарушениями, например, для ревматических болезней).
- Распространенный гиалиноз артериол при гипертонической болезни и сахарном диабете как исход плазморрагии.
- При гипертонической болезни вследствие гиалиноза артериол артериолосклеротический нефросклероз, или первичносморщенные почки: маленькие, плотные почки с мелкозернистой поверхностью и резко истонченным корковым слоем.
- Распространенный гиалиноз мелких сосудов (преимущественно артериол) в основе диабетической микроангиопатии.

Гиалиноз капсулы селезенки

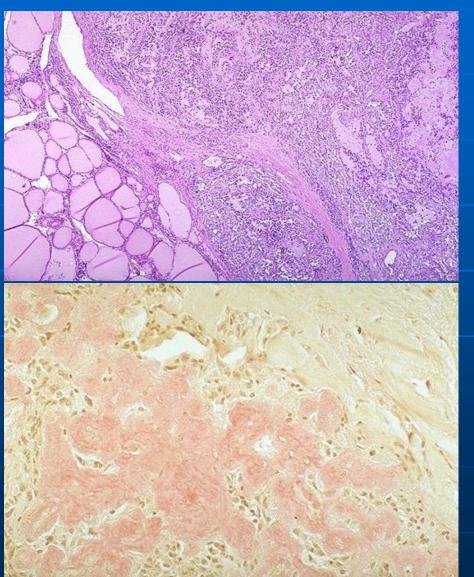



Гиалиноз сосудов селезенки

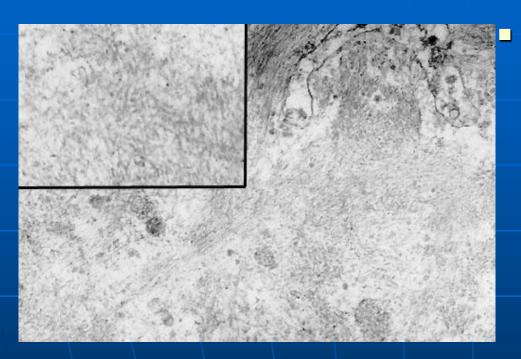

Амилоидоз

- Характеризуется появлением в строме органов и в стенках сосудов не встречающегося в норме сложного белка амилоида.
- Амилоид по ходу ретикулярных (периретикулярный амилодоз) или коллагеновых (периколлагеновый амилоидоз) волокон.
- Выраженный амилоидоз ведет к атрофии паренхимы и склерозу органов, что сопровождается развитием их функциональной недостаточности.
- Амилоид состоит из фибриллярного белка (F-компонент), связанного с плазменными глюкопротеидами (P-компонент).
- Фибриллы амилоида синтезируются клетками макрофагами, плазматическими клетками, кардиомиоцитами, гладкомышечными клет-ками сосудов, апудоцитоами и др. из белков-предшественников.
- Выделено несколько видов специфичного фибриллярного белка амилоида: AA, AL, ASC1 (ATTR), FAP (ATTR) и др.
- Для каждого вида фибриллярного белка идентифицированы обнаруживаемые в норме в крови белки-предшественники.
- Гетерогенность амилоида объясняет разнообразие его клиникоморфологических форм, которые могут быть самостоятельными заболеваниями или осложнениями других болезней.

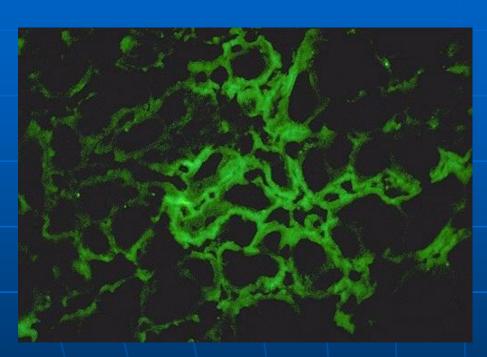
Структура амилоида



- Макроскопическая диагностика амилоидоза: при действии на ткань люголевского раствора и 10% серной кислоты амилоид приобретает сине-фиолетовый или грязно-зеленый цвет.
- При выраженном амилоидозе органы увеличиваются, становятся очень плотными и ломкими, на разрезе приобретают сальный вид.


Микроскопическая диагностика амилоидоза:

- 1) при окраске гематоксилином и эозином амилоид в виде аморфных эозинофильных (розовых) масс;
- 2) при окраске **конго красным** (специфическая окраска на амилоид) амилоид в кирпично-красный цвет;
- 3) при просмотре окрашенных конго красным препаратов в поляризационном микроскопе обнаруживается двухцветность дихроизм: зеленоватое свечение на черном фоне;
- 4) при просмотре окрашенных тиофлавином S или T препаратов в люминесцентном микроскопе специфическое желтое свечение, окрашенных тиазиновым красным красное свечение.
 - 5) иммуногистохимическое исследование.
 - 6) электронная микроскопия.



Окраска гематоксилином и эозином (медуллярная карцинома щитовидной железны)

■ Окраска конго красным.

Электронная микроскопия: фибриллы амилоида

Иммунофлуоресцентная микроскопия (антитела к легким цепям ламбда)

Классификация амилоидоза (на основании биохимической верификации амилоида)

- 1. АА-амилоидоз вторичный амилоидоз, наследственный амилоидоз (периодическая болезнь, синдром Макла-Уэльса).
- 2. AL-амилоидоз первичный (идиопатический амилоидоз, моноклоново-белковый амилоидоз при неопластической плазмоклеточной дискразии).
- 3. FAP-амилоидоз наследственный амилоидоз (семейная амилоидная полинейропатия)
- 4. ASC1-амилоидоз старческий системный (генерализованный) амилоидоз.

Классификация амилоидоза, основанная на этиологическом принципе:

- 1. Первичный (идиопатический) амилоидоз.
- 2. Вторичный (приобретенный, реактивный.
- 3. Наследственный (генетический, семейный).
- 4. Старческий амилоидоз.

Классификация амилоидоза по распространенности процесса:

- 1. Генерализованные формы (первичный, вторичный, наследственный, старческий амилоидоз).
- 2. Локальные формы (некоторые кардиальные, инсулярная и церебральная формы старческого амилоидоза, АПУД-амилоид и др.).

АА-амилоидоз

- Белок-предшественник SAA (сывороточный амилоидный белок, синтезируется преиму-щественно гепатоцитами, аналогичен острофазному" С-реактивному белку, количество резко возрастает при воспалении).
- Характеризуется генерализованным поражением.
- Тип отложения амилоида преимущественно периретикулярный.
- Поражаются почки, печень, кишечник, надпочечники, мелкие сосуды и пр.

АА-амилоидоз

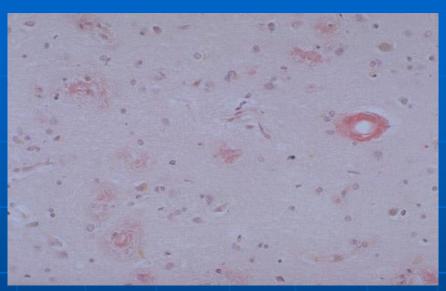
- Включает:
- а) вторичный (реактивный) амилоидоз, возникающий как ослож-нение ряда болезней, сопровождающихся хроническим воспалением, - ревматоидного артрита, бронхоэктатической болезни, туберкулеза,
- остеомиелита, язвенного колита, болезни Крона и пр.
- б) некоторые формы наследственного амилоидоза:
- периодическая болезнь (семейная средиземноморская лихорадка) заболевание с аутосомно-рециссивным типом наследования, характеризующееся рецидивирующими полисерозитами с болевым синдромом; болеют преимущественно армяне, евреи, арабы;
- синдром Майкла-Веллса.

FL-амилоидоз

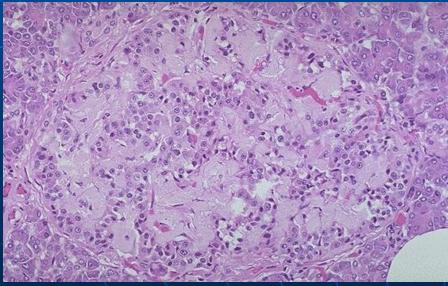
- Белок-предшественник легкие цепи иммуноглобулинов.
- Характеризуется генерализованным типом поражения.
- Тип отложения амилоида периколлагеновый.
- Поражаются сердце, крупные сосуды, поперечнополосатая и гладкомышечная ткани, нервы, кожа и пр.
- Включает:
 - первичный (идиопатический) амилоидоз, возникающий без предшествующего "причинного" заболевания;
 - вторичный амилоидоз, связанный с миеломной болезнью и другими моноклональными В-клеточными пролиферативными состояниями (плазмоклеточными дискразиями).

ASC1 (ATTR) - амилоидоз

- Белок-предшественник ТТК-транстиретин (старое название преальбумин) сывороточный белок, связывающий и переносящий тироксин и ретинол.
- Как правило, является генерализованным с поражением сердца и сосудов.
- Старческий генерализованный амилоидоз.


FAP (ATTR) - амилоидоз

- Белок-предшественник TTR (преальбумин).
- Поражаются периферические нервы.
- Включает некоторые наследственные формы амилоидоза наследственную семейную амилоидную полиневропатию.

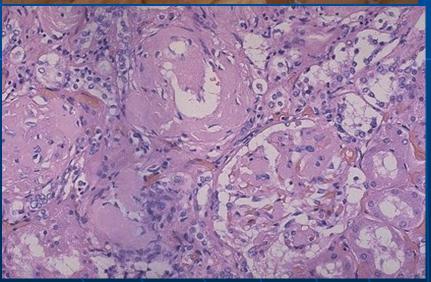

Локальные формы амилоидоза

- а) Изолированный амилоидоз предсердий:
 - фибриллярный белок AANF;
 - белок-предшественник предсердный натрийуретический фактор (ANF).
- *б) Старческий церебральный амилоидоз* (при болезни Альцгей-мера и старческой деменции):
 - фибриллярный белок А-бета-2-протеин (белокпредшественник - APP - трансмембранный гликопротеид);
 - обнаружен ген, кодирующий белок-предшественник A-бета-2протеин, расположенный в 21-й хромосоме.
- в) Эндокринный амилоидоз (APUD-амилоид):
 - при медуллярной карциноме щитовидной железы (фибриллярный белок A Cal; белок-предшественник кальцитонин);
 - островков поджелудочной железы при сахарном диабете второго типа (фибриллярный белок AIAPP; белок-предшественник островковый амилоидный пептид амилин). Относится к старческому локальному амилоидозу.

Локальные формы амилоидоза

Старческий церебральный амилоидоз

 Эндокринный амилоидоз островков поджелудочной железы при сахарном диабете


Амилоидоз почек

- Почки большие, белые, плотные, на разрезе с сальным блеском.
- Амилоид откладывается в клубочках (базальные мембраны капилляров, мезангий), в тубулярных базальных мембранах, в стенках сосудов, строме.
- * Сопровождается развитием нефротического синдрома, в финале приводит к амилоидному сморщиванию почек и развитию хронической почечной недостаточности.

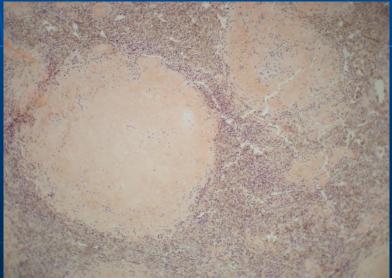
Амилоидоз почек

Отложения амилоида преимущественно в области пирамид;

Микроскопическая картина (окраска гематоксилином и эозином)

Амилоидоз печени

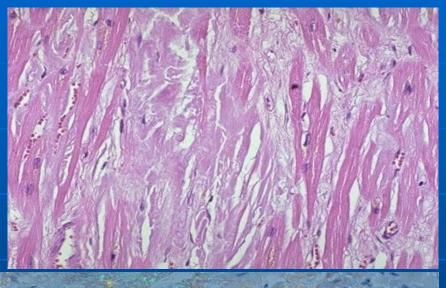
- Печень большая, плотная, светлая с сальным блеском на разреза.
- Амилоид откладывается по ходу синусоидов в дольках, в стенках сосудов.
- Приводит к атрофии гепатоцитов и развитию печеночной недостаточности; при затруднении венозного оттока в связи с поражением центральных вен может сопровождаются портальной гипертензией.


Амилоидоз селезенки

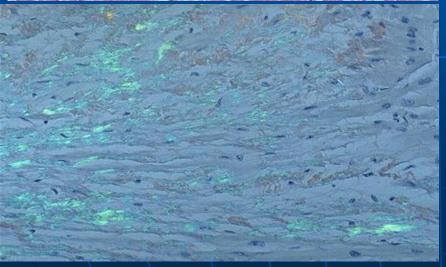
 Амилоид откладывается в лимфоидных фолликулах, которые приобретают на разрезе вид полупрозрачных зерен - саговая селезенка (І стадия) или диффузно по всей пульпе - сальная селезенка (ІІ стадия).

Амилоидоз селезенки

«Саговая селезенка»



Окраска конго красным.


Амилоидоз сердца

- Амилоид обнаруживается под эндокардом, в строме и стенках сосудов.
- Сердце резко увеличивается (кардиомегалия), становится плотным, приобретает сальный блеск.
- Развивается сердечная недостаточность, нарушение ритма.

Амилоидоз сердца

Окраска гематоксилином и эозином;

 Окраска конго красным с исследованием препарата в поляризованном свете.

Амилоидоз кишечника

- Амилоид обнаруживается в базальной мембране эпителия; в стенках мелких сосудов; в виде очагов в строме подслизистой основы.
- Проявляется синдромом мальабсорбции, диареей и пр.

Стромально-сосудистые липидозы

- К стромально-сосудистым липидозам относят нарушение обмена жира жировой клетчатки и жировых депо и нарушение обмена жира (холестерина и его эфиров) в стенках крупных артерий при атеросклерозе.
- Превышение массы тела на 15-20% от средней конституциональной, сопровождающееся увеличением количества жира в жировых депо: подкожной жировой клетчатке, брыжейке, сальнике, эпикарде, костном мозге, называют ожирением.
- Местное увеличение количества жира в депо (чаще подкожной клетчатки) называют липоматозом.

ОЖИРЕНИЕ

- отложение <u>жира,</u> увеличение массы тела за счёт <u>жировой ткани</u>.
- Жировая ткань может отлагаться как в местах физиологических отложений, так и в области молочных желёз, бёдер, живота.

РАСПРОСТРАНЕННОСТЬ ОЖИРЕНИЯ⁵

Всемирная организация здравоохранения (ВОЗ) относит ожирение к хроническим болезням и характеризует его как эпидемическое заболевание.

По данным ВОЗ более ОДНОГО МИЛЛИ-АРДА ЛЮДЕЙ В МИРЕ (каждый шестой человек на Земле) имеет избыточную массу тела, 300 миллионов из них страдают ожирением.

В Европе более половины взрослых в возрасте от 35 до 65 лет имеют избыточную массу тела или ожирение, а в США в эту категорию попадает свыше трети лиц старше 20 лет.

Показателем для определения избыточного веса является Индекс

массы тела (ИМТ).

Индекс массы тела - ИМТ
 (англ. body mass index (BMI)) —
 величина, позволяющая
 оценить степень соответствия
 массы человека и его роста и
 тем самым, косвенно, оценить,
 является ли масса
 недостаточной, нормальной,
 избыточной (ожирение).

 Индекс массы тела рассчитывается по формуле:

 $I = \frac{m}{h^2}$

■ где:

- m масса тела в килограммах
- h рост в метрах,
- и измеряется в кг/м2.
- Показатель индекса массы тела разработан бельгийским социологом и статистиком Адольфом Кетеле (Adolphe Quetelet) в 1869 году.

Индекс массы тела	Масса тела - рост
15 и менее	Острый дефицит массы
15-20	Недостаточная
	(дефицит) масса тела
20-25	Норма
25-30	Избыточная масса тела
30-35	Ожирение I ст.
35-40	Ожирение II ст.
40 и более	Ожирение III ст.

Предрасполагающие факторы ожирения

- 1. Малоподвижный образ жизни
- Обезвоживание
- з. Генетические факторы, в частности:
 - 1. Повышенная активность ферментов липогенеза
 - 2. Снижение активности ферментов липолиза
- 4. Повышенное потребление легкоусваиваемых углеводов:
 - 1. питьё сладких напитков
 - 2. диета, богатая сахарами
- 5. Постоянные попытки снизить вес путём диеты
- 6. Некоторые болезни, в частности эндокринные заболевания (гипогонадизм, гиротиреоз, инсулинома)
- 7. Нарушения питания (например, binge eating disorder), в русской литературе называемое <u>нарушения пищевого поведения</u> психологическое нарушение, приводящее к расстройству приёма пищи
- 8. Склонность к <u>стрессам</u>
- 9. <u>Недосыпание</u>
- 10. Психотропные препараты

Классификация ожирения

- I. Первичное ожирение. Алиментарно-конституциональное (экзогенно-конституциональное)
 - 1. Конституционально наследственное
 - 2. С нарушением пищевого поведения (синдром ночной еды, повышенное потребление пищи на стресс)
 - 3. Смешанное ожирение

II. Вторичное ожирение

- 1. С установленными генетическими дефектами
- 2. Церебральное ожирение
 - опухоли головного мозга
 - травма основания черепа и последствия хирургических операций
 - синдром пустого турецкого седла
 - травмы черепа
 - воспалительные заболевания (энцефалит и др.)
- 3. Эндокринное ожирение
 - гипофизарное
 - гипотиреоидное
 - климактерическое
 - надпочечниковое
 - смешанное
- 4. Ожирение на фоне психических заболеваний и/или приема нейролептиков

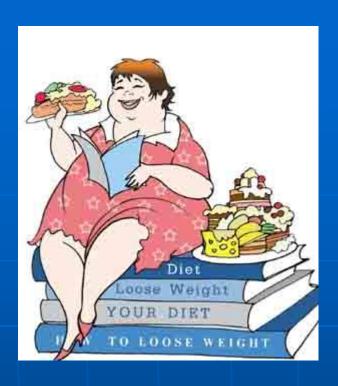
Классификация ожирения по происхождению:

- алиментарное и алиментарно-конституциональное;
- кортико-гипоталамическое (после тяжелых психичес-ких травм и у душевнобольных);
- гипоталамическое и гипоталамо-гипофизарное (при травмах головного мозга, воспалительных и опухолевых поражениях, лобном гиперостозе синдром Морганьи-Мореля, при юношеском базофилизме гипоталамическом синдроме пубертатного периода, послеродовое и климактерическое, пиквикский синдром);
- эндокринное (гипотиреоз, гиперинсулинизм, гиперкортицизм, посткастрационное ожирение);
- лекарственное (инсулин, кортикостероиды, препараты фенотиазинового ряда);
- генетически обусловленные и редкие формы (синдром Прадера-Вилли, синдром Альстрема, синдром Лоренса-Муна-Бидля, синдром Деркума и др.).

ОЖИРЕНИЕ

В зависимости от механизма развития различают следующие виды ожирения:

- 1) алиментарное;
- 2) церебральное (при травме, опухоли головного мозга);
- 3) эндокринное (при синдроме Фрелиха и Иценко-Кушинга, адипозогенитальной дистрофии, гипотиреозе и пр.);
- 4) наследственное.


Клинико-патогенетическая классификация ожирения

- I. Алиментарно-конституциональное (экзогенно-конституциональное) ожирение:
 - 1) семейный характер ожирения;
 - 2) систематическое переедание;
 - 3) нарушения режима питания;
 - 4) малоподвижность.
- II. Гипоталамическое ожирение (гипоталамо-гипофизарное, диэн цефальный синдром).
 - 1) Преимущественно верхний тип ожирения, иногда кушингоид:
 - 2) артериальная гипертензия;
 - 3) вегетативные нарушения;
 - 4) розовые стрии;
 - 5) нарушения функции яичников (дисменорея, гирсутизм, бесплодие).
 - 6) Разновидность синдром пубертатно-юношеского диспитуитаризма:
- ускоренный рост и прибавка массы тела в подростковом возрасте; ускоренное половое развитие; «гиноидное» ожирение у юношей.
- III. Эндокринное ожирение (при первичном заболевании эндокринных желез и после оперативных вмешательств на железах внутренней секреции):
 - 1) гиперкортицизм (болезнь и синдром Иценко-Кушинга);
 - 2) гипотиреоз;
 - 3) гипогонадизм;
 - 4) инсулинома.

ОЖИРЕНИЕ

По внешним проявлениям различают:

- 1) симметричный тип (равномерное распределение жира);
- 2) верхний (лицо, затылок, шея, верхний плечевой пояс);
- 3) средний (в области живота в виде фартука);
- 4) нижний (в области бедер и голеней).

ОЖИРЕНИЕ

В зависимости от процента превышения массы тела:

I степень - 20-29%;

II степень - 30-49%;

III степень - 50-59%;

IV степень - больше 100%.

Стадии ожирения

- а) прогрессирующая,
- б) стабильная.

Жир может располагаться

- 1. В подкожножировой клетчатке (подкожный жир)
- 2. Вокруг внутренних органов (висцеральный жир)
- Подкожно-жировая клетчатка в области живота + висцеральный жир брюшной полости = АБДОМИНАЛЬНЫЙ ЖИР
- Отложение жировой клетчатки в абдоминальной области (верхний тип ожирения, или центральное ожирение) более четко связано с заболеваемостью и смертностью, чем нижний тип ожирения или чем степень ожирения!

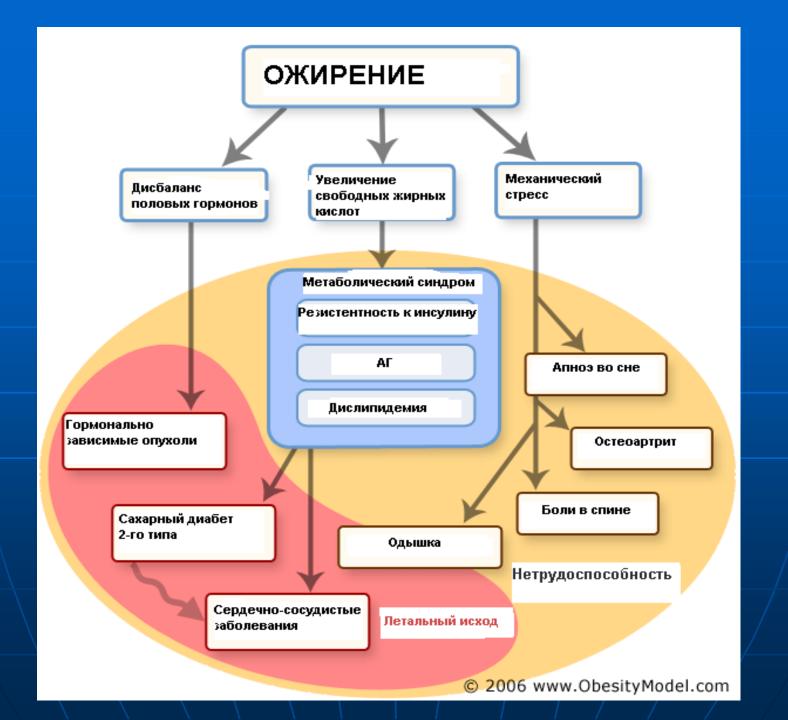
- большое количество абдоминальной жировой ткани связано с высоким риском развития дислипидемии, <u>сахарного диабета</u>, сердечно-сосудистых заболеваний.
- Эта зависимость не связана с общим содержанием жира в организме.
- При одинаковом индексе массы тела (ИМТ), абдоминальное ожирение, или увеличенное отложение жировой клетчатки в области живота, сопровождается более высоким риском развития сопутствующих заболеваний, чем ожирение по нижнему типу.
- Абдоминальное распределение жира увеличивает риск смертности у мужчин и женщин.
- Предварительные данные также свидетельствуют о наличии взаимосвязи данного типа отложения жира и саркомы у женщин.

В зависимости от числа адипозитов и их размеров:

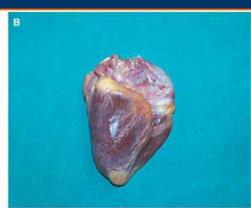
1) гипертрофический вариант общего ожирения:

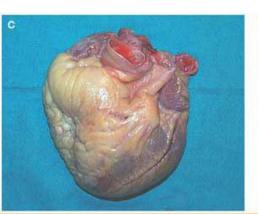
- число адипозитов не изменено;
- адипозиты увеличены и содержат в несколько раз больше триглицеридов;
 - течение злокачественное;

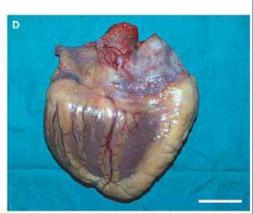
2) гиперпластический вариант ожирения:


- число адипозитов увеличено;
- функция адипозитов не нарушена;
- течение доброкачественное.

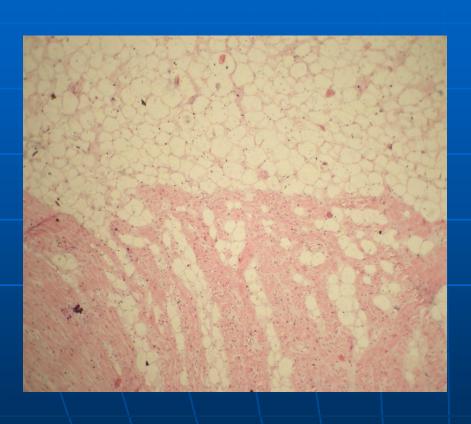
 Больная с экзогенноконституциональным ожирением: относительно равномерное распределение жировой ткани.

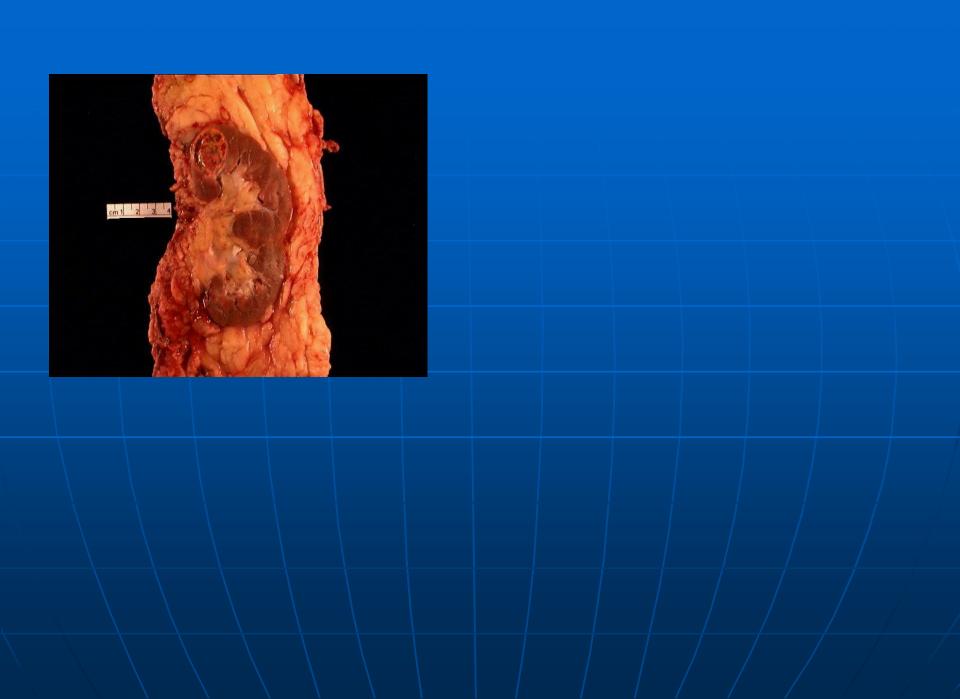





Осложнения ожирения

- Метаболический синдром.
- Гастроэзофагеальная рефлюксная болезнь
- Сахарный диабет 2-го типа.
- Ишемическая болезнь сердца.
- Инфаркт миокарда.
- Инсульт.
- Артериальная гипертензия.
- Хроническая венозная недостаточность.
- Холецистит.
- Желчекаменная болезнь.
- Артриты.
- Деформирующий остеоартроз.
- Грыжи межпозвоночных дисков.
- Синдром поликистозных яичников.
- Онкологические заболевания.




Source: Nat Clin Pract Cardiovasc Med @ 2005 Nature Publishing Group

Ожирение сердца

- развивается при общем ожирении любого генеза.
- Макроскопическая картина: размеры сердца увеличиваются, под эпикардом определяется скопление большого количества жира,
- жировая клетчатка прорастает в строму миокарда,
- кардиомиоциты атрофируются;
- сопровождается развитием сердечной недостаточности;
- возможен разрыв правого желудочка, в котором ожирение выражено сильнее.

Простое ожирение сердца

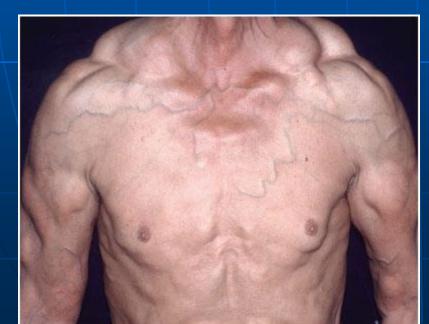

Липоматозы

- Увеличение количества жира в депо носит местный характер;
- Жировая ткань обычно более и менее инкапсулирована, но, как правило, отсутствует клеточная реакция.
- К липоматозам относят болезнь Деркума, синдромы Маделунга, Рота и Пэйлэрда, Лэньу и Бенсо.

Липоматозы: Болезнь Деркума

- Наиболее часто у тучных женщин в климактерическом периоде.
- Предположительно в основе полигландулярная эндокринопатия (заболевание сопровождается атрофией эндокринных желез).
- Болезненные узловатые отложения жира, похожие на липомы, в подкожной клетчатке области бедер, живота и верхних конечностей.
- В области узлов цианоз кожи, нарушено потоотделение, нередки кровоизлияния.
- Характерно строение жировиков: различные по величине, форме и консистенции, отличие от обычных липом – обилие сосудов с выраженной периваскулярной лимфоидной инфильтрацией и развитие соединительной ткани (ангиофибролипомы).
- Изменения большинства эндокринных желез (склероз, атрофия, кистозное перерождение), но наиболее выраженные в гипофизе, щитовидной железе, надпочечниках.
- Поражения других органов и тканей (например, остеопороз, дистрофические изменения симпатических узлов и др.) менее характерны и являются, по-видимому, вторичными.

Липоматозы: Болезнь Деркума



Липоматозы: Синдром Маделунга

- Причина неясна.
- Разные авторы связывают его развитие с недостаточностью функции щитовидной железы, со склонностью к нервно-дистрофическим процессам, с первичным поражением лимфатических узлов шеи, алкоголизмом.
- Характеризуется множественными, диффузными болезненными разрастаниями жировой ткани в области лимфатических узлов шеи с резким утолщением шеи, что может приводить к затруднению дыхания и дисфагии.
- После оперативного лечения возможны рецидивы.
- При гистологическом обследовании выявляют скопления жировой ткани нормальной структуры.
- Тип наследования аутосомно-доминантный.

Липоматозы: Синдром Маделунга

Липоматозы

Синдромы Рота и Пэйлэрда, Лэньу и Бенсо:

- Относятся к симметричным липоматозам.
- При синдроме Рота и Пэйлэрда очаговые отложения жира появляются в поясничной области и на конечностях.
- При синдроме Лэньу и Бенсо в области шеи, живота и паховых складок.

Спасибо за внимание!