Материалы

для студентов к практическим занятиям по патологической анатомии на кафедре патологической анатомии

II курс стоматологический факультет

Тема: «**Иммунопатологические процессы**: реакции гиперчувствительности. Аутоиммунные болезни (струма Хашимото, системная красная волчанка, ревматоидный артрит, синдром Шегрена, узелковый периартериит) (Тема 9, часть 1)».

1. Цель занятия. Изучить вопросы этиологии, патогенеза, морфологии, осложнений и исходов реакций гиперчувствительности; а также отдельных заболеваний в качестве примеров аутоиммунных болезней.

2. Требования к уровню студента по освоению дисциплины - патологическая анатомия. Студент должен знать:

- 1. Определение реакций гиперчувствительности.
- 2. Иммунопатологические особенности и морфологические проявления реакций гиперчувствительности I-IV типов.
 - 3. Определение аутоиммунных болезней.
- 4. Определение, этиологию, патогенез, морфологические проявления, осложнения и исходы аутоиммунных болезней на примере струмы Хашимото, системной красной волчанки, ревматоидного артрита, синдрома Шегрена, узелкового периартериита.

Теоретические аспекты.

Различают 4 *основных типа* патологических состояний иммунной системы: 1) реакции гиперчувствительности, которые представляют собой иммунологическое повреждение тканей; 2) аутоиммунные болезни, являющиеся иммунными реакциями, направленными против собственного организма; 3) синдромы иммунного дефицита, возникающие вследствие врожденного или приобретенного дефекта нормального иммунного ответа; 4) амилоидоз.

Иммунное повреждение тканей (реакции гиперчувствительности)

Контакт организма с антигеном приводит к развитию не только защитного иммунного ответа, но и реакций, повреждающих ткани.

Реакции гиперчувствительности могут быть инициированы взаимодействием антигена с антителом или клеточными иммунными механизмами. Иммунные реакции, повреждающие ткани, могут быть связаны не только с экзогенными, но и эндогенными антигенами.

І тип реакций гиперчувствительности (анафилактический тип) может быть местным или системным. Системная реакция возникает в ответ на внутривенное введение антигена, к которому организм хозяина был предварительно сенсибилизирован. Местные реакции зависят от места проникновения антигена и проявляются в ограниченном отеке кожи (кожная аллергия, крапивница), выделениях из носа и конъюнктив (аллергический ринит и конъюнктивит), сенной лихорадке, бронхиальной астме или аллергическом гастроэнтерите (пищевая аллергия). Развитие реакций гиперчувствительности І типа у человека обеспечивает ІдЕ. ІдЕ-антитела, образованные в ответ на аллерген, атакуют тучные клетки и базофилы, обладающие высокочувствительными Fc-рецепторами. При повторном контакте тучных клеток и базофилов, сенсибилизированных цитофильными ІдЕ-антителами, со специфическим антигеном происходит выброс медиаторов, ответственных за клинические проявления.

Системная анафилаксия развивается после введения гетерологичных белков, например антисывороток, гормонов, ферментов, полисахаридов и некоторых лекарств, например пенициллина. Тяжесть состояния зависит от уровня предварительной сенсибилизации. При

патологическом исследовании у одних больных обнаруживают отек и кровоизлияния в легких, у других — острую эмфизему легких с дилатацией правого желудочка сердца.

Местная анафилаксия. Иногда это состояние называют атопической аллергией. Около 10 % населения страдает от местной анафилаксии, возникающей в ответ на попадание в организм аллергенов: пыльцы растений, перхоти животных, домашней пыли и т. п. К заболеваниям, в основе которых лежит местная анафилаксия, относят крапивницу, ангионевротический отек, аллергический ринит (сенную лихорадку) и некоторые формы астмы. Существует семейная предрасположенность к аллергии этого типа.

II тип реакций гиперчувствительности. При II типе реакции гиперчувствительности появляются антитела, направленные против собственных тканей, выступающих в роли антигенов. Известны *три антителозависимых механизма развития реакций этого типа*.

Комплементзависимые реакции. Существуют два механизма, с помощью которых антитело и комплемент могут вызывать гиперчувствительность II типа: прямой лизис и опсонизация. В первом случае антитело (IgM или IgG) реагирует с антигеном на поверхности клетки, обусловливая активацию системы комплемента. Это приводит в действие мембраноатакующий комплекс (MAK), который нарушает целостность мембраны, "продырявливая" липидный слой. Во втором случае клетки фагоцитируются после фиксации антитела или СЗb-компонента комплемента к поверхности клетки (опсонизация). При данном варианте гиперчувствительности И типа в качестве мишени чаще всего выступают клетки крови (эритроциты, лейкоциты и тромбоциты), но антитела могут быть направлены также против внеклеточных структур, например против гломерулярной базальной мембраны.

Антителозависимая клеточная цитотоксич-н о с т ь не сопровождается фиксацией комплемента, однако вызывает кооперацию лейкоцитов. Клетки-мишени, покрытые IgG-антителами в низких концентрациях, уничтожаются несенсибилизированными клетками, обладающими Fc-рецепторами. Эти клетки связывают клетки-мишени с помощью рецепторов для Fc-фрагмента IgG, а лизис клеток происходит без фагоцитоза. В таком виде цитотоксичности участвуют моноциты, нейтрофилы, эозинофилы и NK-клетки.

Антителоопосредованная дисфункция клеток. В некоторых случаях антитела, направленные против рецепторов на поверхности клеток, нарушают их функционирование, не вызывая повреждения клеток или развития воспаления. Например, при миастении антитела вступают в реакцию с ацетилхолиновыми рецепторами в двигательных концевых пластинках скелетных мышц, повреждая нервно-мышечную передачу и вызывая, таким образом, мышечную слабость.

Ш тип реакций гиперчувствительности (связанный с иммунными комплексами). Развитие реакций гиперчувствительности Ш типа связано с комплексами антиген— антитело, образующимися в результате связывания антигена с антителом в кровеносном русле (циркулирующие иммунные комплексы) или вне сосудов (иммунные комплексы *in situ*). *Циркулирующие иммунные комплексы* вызывают повреждение при попадании в стенку кровеносных сосудов или фильтрующие структуры (гломерулярный фильтр в почках).

Известны два типа иммунокомплексных повреждений, которые возникают при поступлении в организм экзогенного антигена (чужеродный белок, бактерия, вирус) и при образовании антител против собственных антигенов. Заболевания, обусловленные иммунными комплексами, могут быть генерализованными, если иммунные комплексы образуются в крови и оседают во многих органах, либо связанными с отдельными органами, такими как почки (гломерулонефрит), суставы (артрит) или мелкие кровеносные сосуды кожи (местная реакция Артюса).

Системная и м мунокомплексная болезнь. Одной из ее разновидностей является *острая сывороточная болезнь*, возникающая в результате многократного введения больших доз чужеродной сыворотки крови, используемой для пассивной иммунизации.

Патогенез системной иммунокомплексной болезни складывается из трех фаз: образование в крови комплексов антиген—антитело; осаждение иммунных комплексов в различных тканях; воспалительная реакция. Первая фаза начинается с попадания антигена в кровь

и продукции антител. Приблизительно через 5 дней после введения сыворотки образуются антитела против ее компонентов, которые, еще находясь в кровотоке, формируют комплексы антиген—антитело. Во вторую фазу эти комплексы оседают в различных тканях. На это осаждение влияют следующие факторы: заряд иммунных комплексов (анионный против катионного), валентность антигена, авидность (степень сродства антител к антигену) антитела, аффинность (родство) антигена к компонентам различных тканей, трехмерная структура комплексов (решетка) и гемодинамические факторы. Чаще всего иммунные комплексы оседают в почечных клубочках, суставах, коже, сердце, серозных оболочках и мелких кровеносных сосудах. Для того чтобы эти комплексы покинули систему кровообращения и осели в тканях, необходимо увеличение проницаемости сосудистого русла. Как только комплексы осядут в тканях, они инициируют острую воспалительную реакцию.

В третью фазу (приблизительно через 10 дней после введения антигена) наблюдаются клинические проявления болезни, такие как лихорадка, крапивница, артралгии, увеличение лимфатических узлов и протеинурия. Вслед за осаждением иммунных комплексов происходит активация системы комплемента с образованием ее биологически активных компонентов. Такая активация сопровождается провоспалительными эффектами. Фагоцитоз комплексов антиген—антитело лейкоцитами приводит к выбросу или образованию различных дополнительных провоспалительных веществ, включая простагландины, сосудорасширяющие белки и хемотаксические вещества. В результате развиваются васкулит, гломерулонефрит, артрит и т. п.

В морфологической картине иммунокомплексного повреждения доминирует острый некротизирующий васкулит. Например, для пораженных клубочков почек характерны гиперкле-точность (большое количество клеток) в результате набухания и пролиферации эндотелиальных и мезангиальных клеток, а также инфильтрация нейтрофилами и моноцитами. При иммунофлюоресцентной микроскопии иммунные комплексы видны в виде гранулярных депозитов иммуноглобулина и комплемента, а под электронным микроскопом — в виде электронно-плотных отложений (депозитов) вдоль гломерулярной базальной мембраны.

Хроническая сывороточная болезнь возникает при повторном или продолжительном контакте с антигеном. Постоянная антигенемия необходима для развития хронической иммунокомплексной болезни, так как иммунные комплексы чаше всего оседают в сосудистом русле. Например, системная красная волчанка связана с долгим сохранением (персистенцией) аутоантигенов. Часто, однако, несмотря на наличие характерных морфологических изменений и других признаков, свидетельствующих о развитии иммунокомплексной болезни, антиген остается неизвестным. Такая ситуация характерна для ревматоидного артрита, узелкового периартериита, мембранозной нефропатии и некоторых васкулитов.

Местная иммунокомплексная болезнь (реакция Артюса) выражается в местном некрозе ткани, возникающем вследствие острого иммунокомплексного васкулита. Этот процесс можно вызвать в эксперименте путем внутрикожного введения антигена иммунному животному, которое уже имеет циркулирующие антитела против антигена. Из-за избытка антител при попадании антигена в стенку сосудов образуются крупные иммунные комплексы, которые вызывают воспалительную реакцию. Реакция Артюса развивается в течение нескольких часов и достигает пика через 4—10 ч после инъекции, когда появляется зона видимого отека с кровоизлияниями. При иммунофлюоресцентной микроскопии удается выявить комплемент, иммуноглобулины и фибриноген, осажденные в стенках сосудов. При светооптическом исследовании описывают фибриноидный некроз сосудов. Разрыв сосудов приводит к местным кровоизлияниям, но чаще всего наблюдается тромбоз, способствующий развитию местных ишемических повреждений.

IV тип гиперчувствительности (клеточно-опосредованный). Эти реакции вызывают специфически сенсибилизированные Т-лимфоциты. IV тип включает в себя классические замедленные реакции гиперчувствительности, вызываемые CD4[^] Т-клетками, и прямую клеточную цитотоксичность, опосредованную CD8⁺ Т-клетками. Это основной тип иммунного ответа на различные внутриклеточные инфекционные агенты, особенно микобактерии

туберкулеза, а также на многие вирусы, грибы, простейшие и паразиты. Другими примерами служат контактная кожная чувствительность к химическим веществам и реакция отторжения. Описаны два варианта реакций гиперчувствительности IV типа.

Гиперчувствительность замедленного типа (ГЗТ). Примером служит реакция на внутрикожно введенный туберкулин — компонент из стенок микобактерии туберкулеза. У сенсибилизированного человека через 8—12 ч возникают покраснение и уплотнение в месте введения, а пик реакции наступает через 24—72 ч. У сильно сенсибилизированных больных в зоне инъекции развивается некроз. Светооптически ГЗТ характеризуется накоплением мононуклеарных клеток в подкожной ткани и дерме (преимущественно вокруг мелких вен и венул) с появлением характерных периваскулярных манжеток. Увеличение сосудистой проницаемости связано с образованием пор между эндотелиальными клетками. Выход белков плазмы за пределы сосудистого русла увеличивает отек дермы и сопровождается оседанием фибрина в интерстиции. В участках повреждения преобладают CD4⁺ Т-клетки.

При персистенции антигена макрофаги трансформируются в эпителиоидные клетки, окруженные валом из лимфоцитов, — формируется *гранулема*. Такой вид воспаления характерен для IV типа гиперчувствительности и называется *гранулематозным воспалением*.

Цитотоксичность, опосредованная Т-лимфоцитами. При этом состоянии сенсибилизированные CD8⁺ Т-клетки уничтожают клетки-мишени, которые являются носителями антигена (цитотоксические лимфоциты — CTL). Т-клетки, реагирующие на антигены гистосовместимости, фиксированные на поверхности клеток, играют важную роль в отторжении трансплантата. Они также участвуют в защите от вирусных инфекций. В клетках, пораженных вирусом, вирусные пептиды связываются с молекулами I класса главного комплекса гистосовместимости (ГКГС) и в виде комплексов транспортируются к поверхности клетки. Этот комплекс распознается цитотоксическими CD8⁺ Т-клетками. Лизис зараженных клеток завершается до репликации вируса, что приводит к уничтожению последнего. Полагают, что многие опухолевые антигены представлены на поверхности клеток, а CTL участвуют в противоопухолевом иммунитете.

Отторжение трансплантата. Реакция отторжения трансплантата связана с распознаванием хозяином пересаженной ткани как чужеродной. Антигенами, ответственными за отторжение, являются антигены HLA. Отторжение трансплантата — сложный процесс, во время которого имеют значение как клеточный иммунитет, так и циркулирующие антитела.

Аутоиммунные болезни

Причиной некоторых заболеваний человека является развитие иммунной реакции, направленной против собственных антигенов.

Различают три основных признака аутоиммунных заболеваний: 1) наличие аутоиммунной реакции; 2) наличие клинических и экспериментальных данных о том, что такая реакция не вторична к повреждению ткани, а имеет первичное патогенетическое значение; 3) отсутствие иных определенных причин болезни. Встречаются аутоиммунные болезни, при которых действие аутоантител направлено против единственного органа или ткани и в результате развивается местное повреждение. Например, при тиреоидите Хашимото антитела абсолютно специфичны для щитовидной железы. При системной красной волчанке аутоантитела реагируют с составными частями ядер различных клеток. При синдроме Гудпасчера антитела против базальной мембраны легких и почек вызывают повреждения только в этих органах. Патологическая анатомия отдельных аутоиммунных болезней будет рассмотрена в главах, посвященных болезням соответствующих органов или систем органов.

3. План занятия

Макропрепараты

1. Изучить реакцию гиперчувствительности II типа по макроскопической картине. Описать макропрепарат "Большая пестрая почка" (подострый гломерулонефрит). Обратить внимание на размеры, консистенцию, цвет поверхности почки и на разрезе.

2. *Изучить зоб Хашимото по макроскопической картине*. Описать <u>макропрепарат "Зоб Хашимото".</u> Обратить внимание на размеры и поверхность железы, консистенцию, вид ткани на разрезе.

Микропрепараты

- 1. Изучить реакцию гиперчувствительности I типа по микроскопической картине. Описать микропрепарат "Биоптат бронха при бронхиальной астме" (окраска гематоксилином и эозином). Обратить внимание на кровенаполнение и проницаемость сосудов слизистой оболочки, базальную мембрану эпителия, слизистые железы, состав и локализацию клеточного инфильтрата, содержимое бронха.
- 2. Изучить реакцию гиперчувствительности III типа по микроскопической картине. Описать микропрепарат "Волчаночный нефрит" (окраска гематоксилином и эозином). Обратить внимание на некроз сосудистых петель клубочков, толщину базальных мембран капилляров, тромбы в просвете некоторых капилляров, изменения ядер клеток.
- 3. Изучить реакцию гиперчувствительности IV типа по микроскопической картине. Описать микропрепарат "Вирусный хронический активный гепатит" (окраска гематоксилином и эозином). Обратить внимание на толщину портальных трактов, локализацию и клеточный состав инфильтрата, локализацию и размеры фокусов некроза гепатоцитов, апоптозные тельпа.
- 4. Изучить реакцию гиперчувствительности IV типа по микроскопической картине. Описать микропрепарат "Лепрозная гранулема" (окраска гематоксилином и эозином, по Цилю— Нильсену). Обратить внимание на локализацию и клеточный состав инфильтрата, отметить крупные макрофаги лепрозные клетки Вирхова. Обнаружить в цитоплазме этих клеток при окраске по Цилю—Нильсену скопление возбудителя.
- 5. *Изучить зоб Хашимото по микроскопической картине*. Описать <u>микропрепарат "Зоб Хашимото" (окраска гематоксилином и эозином)</u>. Обратить внимание на локализацию и клеточный состав инфильтрата, состояние паренхимы.

Электронограммы

- 1. *Изучить фибриноидный некроз с помощью электронной микроскопии*. Описать электронограмму "Фибриноидный некроз". Обратить внимание на состояние коллагеновых фибрилл, скопление фибрина в зоне некроза.
- 2. Изучить воздействие лимфоцита на гепатоцит при вирусном хроническом активном гепатите с помощью электронной микроскопии. Описать электроннограмму "Клеточный цитолиз при хроническом вирусном гепатите В". Обратить внимание на контакт лимфоцита-киллера с гепатоцитом, изменение цитоплазматической мембраны гепатоцита.

Ситуационные задачи.

Ситуационная задача 1

Больной А., 75 лет, страдавший атопической формой бронхиальной астмы, умер в состоянии астматического статуса от острой легочно-сердечной недостаточности.

Вопросы к ситуационной задаче № 1

- 1. Какой патологический процесс развился у данного больного в легких? 2. Каков патогенез анафилактической реакции в легких?
 - 3. Объясните, является ли эта реакция местной или общей?
 - 4. Опишите микропрепарат легких данного больного.
- 5. С какими патологическими процессами следует дифференцировать данный патологический процесс в бронхах?
- 6. Какова роль тучных клеток в данном процессе? Перечислите основные медиаторы тучных клеток.

Ситуационная задача 2

Больной Б. с синдромом Гудпасчера и поражением легких погиб от быстро прогрессирующей хронической почечной недостаточности.

Вопросы к ситуационной задаче № 2

- 1. Назовите и опишите микроскопические изменения в почках, явившиеся причиной смерти больного.
 - 2. Объясните патогенез почечной и легочной патологии.
 - 3. Другое название синдрома Гудпасчера в легких.
 - 4. Назовите метод лабораторной диагностики синдрома Гудпасчера.
- 5. Какой пигмент накапливается в легких и с помощью какой реакции он выявляется в гистологических препаратах?

Ситуационная задача 3

Больная П., 28 лет, обратилась к врачу по поводу повышения температуры тела до 39-40 ОС, нарастающей слабости, головной боли, расстройства сна, аппетита, появления болей в мышцах и суставах, красноватых высыпаний на коже лица в виде «бабочки», в верхней половине грудной клетки в виде «декольте». При исследовании крови обнаружены LE-клетки.

Вопросы к ситуационной задаче № 3

- 1. Какое заболевание можно заподозрить у больной?
- 2. Объясните, что такое LE-клетки?
- 3. Какие еще изменения крови позволят подтвердить диагноз?
- 4. Каков патогенез системной красной волчанки?
- 5. Больной проводилось лечение, однако, через несколько лет в моче появилась стойкая протеинурия. Какими изменениями почек может быть обусловлен этот симптом? Опишите эти изменения.
 - 6. Объясните патогенез волчаночного нефрита?

Ситуационная задача 4

Больная Р., 40 лет, обратилась в поликлиническое отделение с жалобами на дискомфорт в области шеи, зябкость, сонливость, вялость, снижение памяти, снижение работоспособности, сухость кожи, ломкость и выпадение волос на голове. Анамнез - без особенностей. Наследственность по эндокринной патологии не отягощена. При осмотре щитовидная железа незначительно увеличена, плотноватая.

Вопросы к ситуационной задаче № 4

- 1. Какие исследования целесообразно провести для уточнения диагноза?
- 2. Уровень тиреотропного гормона (ТТГ) при повторных исследованиях повышен, Тз и Т4 в норме. При цитологическом исследовании материала, полученного тонкоигольной биопсией, обнаружено большое количество лимфоидных клеток и В-клетки. Каков предположительный диагноз? Как еще можно его подтвердить?
 - 3. Опишите соответствующий микропрепарат.

ВОПРОСЫ ТЕСТОВОГО КОНТРОЛЯ:

Выбрать все правильные ответы

- 1. Макрофаги секретируют:
- а) ИЛ-1,
- б) ФНО,
- в) производные арахидоновой кислоты,
- г) активатор плазминогена,
- д) к-цепи иммуноглобулинов.

Выбрать все правильные ответы

2. *Характеристика CD4*⁺-лимфоцитов:

- а) составляют менее 1/3 всех лимфоцитов,
- б) выполняют супрессорные функции,
- в) выделяют ИЛ-2,
- г) обладают цитотоксичностью,
- д) выделяют IgE.

Выбрать все правильные ответы

- 3. Характеристика NK-клеток:
- а) могут фагоцитировать опухолевые клетки,
- б) их активность снижает ИЛ-2,
- в) распознают и убивают зараженные вирусами клетки,
- Γ) их активность стимулирует $\Pi\Gamma E_2$,
- д) действуют в кооперации с В-клетками.

Выбрать один правильный ответ

- **4.** Заложенность носа и приступы чиханья как проявление I типа гиперчувствительности наблюдаются при:
- а) аллергическом рините,
- б) бронхиальной астме,
- в) изолированном дефиците IgA,
- г) болезни Шегрена,
- д) синдроме Вискотта—Олдрича.

Выбрать один правильный ответ

- 5. При атопическом дерматите преобладает иммунный механизм:
- а) антителосвязанная цитотоксичность,
- б) иммунокомплексный,
- в) ГЗТ,
- г) цитотоксичность, связанная с клетками.

Выбрать один правильный ответ

- 6. Заболевание характеризуется приступами кашля и свистящего учащенного дыхания. Главную патогенетическую роль играют лейкотриены, вызывающие спазм гладких мышц в стенках бронхов. Заключение:
- а) аллергический ринит,
- б) бронхиальная астма,
- в) хронический бронхит,
- г) бронхопневмония,
- д) крупозная пневмония.

Выбрать один правильный ответ

- 7. Реакция гиперчувствительности, связанная с образованием IgE:
- а) І тип, анафилактическая реакция,
- б) ІІ тип, цитотоксическая реакция,
- в) III тип, иммунокомплексная реакция,
- г) IV тип, ГЗТ,
- д) реакция "трансплантат против хозяина".

Выбрать все правильные ответы

- 8. Ко ІІ типу реакций гиперчувствительности относятся:
- а) аутоиммунная гемолитическая анемия,
- б) миастения,

- в) реакция на переливание крови,
- г) болезнь Грейвса,
- д) сенная лихорадка.

Выбрать все правильные ответы

- 9. Аутоантитела играют важную роль в патогенезе:
- а) болезни "трансплантат против хозяина",
- б) миастении,
- в) системной красной волчанки,
- г) атрофического гастрита, сопровождающегося перници-озной анемией,
- д) I типа (инсулинзависимого) сахарного диабета.

Выбрать один правильный ответ

- 10. У 50-летней женщины отмечены потливость, тахикардия, потеря массы тела и экзофтальм. Ее щитовидная железа увеличена и теплая на ощупь. Уровень тиреоидстимулирующего гормона в крови низкий, а тиреоидных гормонов T_3 и T_4 повышен. Заключение:
- а) опухоль щитовидной железы,
- б) синдром Ди Джорджи,
- в) болезнь Грейвса,
- г) миастения,
- д) синдром Вискотта—Олдрича.

Выбрать один правильный ответ

- 11. Наиболее специфичны для склеродермии антитела к:
- а) ядрам,
- б) ядрышкам,
- в) двунитевой ДНК,
- г) гистону.

Выбрать один правильный ответ

- 12. Антитела к центромере бывают при:
- а) системной красной волчанке,
- б) болезни Шегрена,
- в) прогрессирующей склеродермии,
- г) полимиозите,
- д) CREST-синдроме.

Выбрать все правильные ответы

- 13. Характеристика системной красной волчанки:
- а) повреждение органов связано с NK-клетками,
- б) аутоантитела против нативной двунитевой ДНК,
- в) дефицит С₂- и С₄-компонентов комплемента,
- г) депозиты иммунных комплексов во многих органах.

Выбрать один правильный ответ

- 14. Иммунный механизм при аутоиммунной гемолитической анемии:
- а) цитотоксичность, связанная с антителами,
- б) иммунокомплексный,
- в) гиперчувствительность немедленного типа,
- г) цитотоксичность, связанная с клетками,
- д) гиперчувствительность замедленного типа.

Выбрать один правильный ответ

- 15. 39-летняя женщина страдает от сухости рта и глаз, имеются затруднения при глотании твердой пищи. При осмотре отмечена припухлость слева около уха. Серологические тесты позволили выявить противоядерные антитела и антитела к ри-бонуклеопротеинам. Заключение:
- а) дерматомиозит,
- б) смешанное заболевание соединительной ткани,
- в) тяжелый комбинированный иммунодефицит,
- г) болезнь Шегрена,
- д) синдром Вискотта—Олдрича.

Выбрать один правильный ответ

- 16. У 33-летней женщины обнаружены слабость глазных мышц и общая утомляемость, антитела к ацетилхолиновым рецепторам. Заключение:
- а) дерматомиозит,
- б) болезнь Грейвса,
- в) миастения,
- г) полимиозит.

Выбрать один правильный ответ

- 17. Иммуннокомплексная реакция (III тип гиперчувствительности) повреждает ткани при:
- а) узелковом полиартериите,
- б) pemphigus vulgaris,
- в) буллезном пемфигоиде,
- г) реакции на ядовитый плющ,
- д) хроническом отторжении почечного трансплантата.

Выбрать один правильный ответ

- 18. Сверхострое отторжение почечного трансплантата обусловлено:
- а) Т-хелперами,
- б) Т-супрессорами,
- в) NK-клетками,
- г) IgE,
- д) комплементом.

Выбрать один правильный ответ

- 19. Кожная сыпь, диарея и желтуха выявлены у больного лейкозом, леченного облучением и пересадками костного мозга. Заключение:
- а) дерматомиозит,
- б) болезнь "трансплантат против хозяина",
- в) вирусный гепатит С,
- г) вирусный гепатит В,
- д) системная красная волчанка.

4. Список рекомендуемой литературы:

Основная литература:

- 1. Струков А. И. Патологическая анатомия [Электронный ресурс] : учебник / Струков А. И., Серов В. В. ; под ред. В.С. Паукова. 6-е изд., перераб. и доп. М. : Литтерра, 2013. 880 с. Режим доступа: http://www.studentlibrary.ru/
- 2. Струков А. И. Патологическая анатомия [Текст] : учебник / Струков А. И., Серов В. В. 5-е изд., стер. М. : Литтерра, 2012. 848 с. : ил.— (Учебник для студентов медицинских вузов)/

- 3. Общая патологическая анатомия [Электронный ресурс] : руководство к практическим занятиям для стоматологических факультетов : учебное пособие / Зайратьянц О. В., Рябоштанова Е. И., Зотова Л. А., Бойкова С. П. и др. ; под общ. ред. О. В. Зайратьянца . М. : ГЭОТАР-Медиа , 2013 . 296 с. : ил. . Режим доступа: http://www.studentlibrary.ru/
- 4. Частная патологическая анатомия [Электронный ресурс] : руководство к практическим занятиям для стоматологических факультетов : учебное пособие / ; О.В. Зайратьянц, Е.И. Рябоштанова, Л.А. Зотова, С.П. Бойкова, Л.Г. Миринова, К.В. Опаленов, Н.А. Швец, А.М. Токмаков, Г.О. Зайратьянц, А.В. Журавлева, О.П. Мишутченко, Н.А. Грекова, О.К. Кошелева, Г.И. Макарняева, Ж.Л. Ганеева . 2-е изд., перераб. и доп. . М. : ГЭОТАР-Медиа , 2013 . 240 с. : ил. . Режим доступа: http://www.studentlibrary.ru/
- **5.** Смирнов А. В. Атлас микропрепаратов по патологической анатомии для стоматологического факультета [Текст] : учеб. пособие / Смирнов А. В., Григорьева Н. В., Бибик Е. И. и др. ; ВолгГМУ Минздрава РФ, Каф. патол. анатомии ; Волгогр. мед. науч. центр. Волгоград : Изд-во ВолгГМУ, 2016. 42, [2] с. : цв. ил.

Дополнительная литература:

- 1. Патологическая анатомия [Текст] : нац. рук. / Пальцев М. А., Кактурский Л. В., Зайратьянц О. В. ; гл. ред. : М. А. Пальцев, Л. В. Кактурский, О. В. Зайратьянц; Ассоциация мед. о-в по качеству АСМОК; Рос. о-во патологоанатомов . М. : ГЭОТАР-Медиа , 2014 . 1259, [5] с. : ил., цв. ил. + 1 CD-ROM. (Национальные руководства)
- 2. Смирнов А.В. Атлас по общей патологической анатомии [Текст]: учебное пособие/Смирнов А.В., ВолгГМУ Минздрава РФ. Волгоград: ВолгГМУ, 2016 140с.
- 3. Смирнов А.В. Атлас по частной патологической анатомии [Текст]: учебное пособие/Смирнов А.В., ВолгГМУ Минздрава РФ. Волгоград: ВолгГМУ, 2016 164с.
- 4. Смирнов А.В., Григорьева Н.В., Бибик Е.И., Битик О.В.. Зубаева В.Э., Титова И.А. Атлас микропрепаратов по патологической анатомии для стоматологического факультета [Текст]: учебное пособие/Смирнов А.В., ВолгГМУ Минздрава РФ. Волгоград: ВолгГМУ, 2016 44с.
- 5. Смирнов А.В. Карманный атлас микропрепаратов по общей патологической анатомии [Текст]: учебное пособие/Смирнов А.В., ВолгГМУ Минздрава РФ. Волгоград: ВолгГМУ, 2018-108c.
- 6. Повзун С. А. Патологическая анатомия в вопросах и ответах [Текст] : учеб. пособие / Повзун С. А. . М. : ГЭОТАР-Медиа , 2007 . 176 с.
- 7. Зайратьянц О. В. Патологическая анатомия [Текст] : атлас / Зайратьянц О. В., Бойкова С. П., Зотова Л. А., Колонтарев Б. А. ; М-во образования и науки РФ; под ред. О. В. Зайратьянца . М. : ГЭОТАР-Медиа, 2012. 960 с. : цв. ил.
- 8. Пальцев М. А. Атлас по патологической анатомии [Текст] : учебник для студентов мед. вузов / Пальцев М. А., Пономарев А. Б., Берестова А. В. . 4-е изд., стер. . М. : Медицина , 2010 . 422 с. : ил., цв. ил., [5] л. цв. ил. . Учебная литература для студентов медицинских вузов .
- 9. Патология [Электронный ресурс] : руководство / под ред. В. С. Паукова, М. А. Пальцева, Э. Г. Улумбекова. 2-е изд., испр. и доп. М. : ГЭОТАР-Медиа, 2015. 2500 с. Режим доступа: http://www.studentlibrary.ru
- 10. Патология [Электронный ресурс] : в 2 т. Т. 1 / под ред. М. А. Пальцева, В. С. Паукова.- М. : ГЭОТАР-Медиа, 2011. 512 с. Режим доступа: http://www.studentlibrary.ru
- 11. Патология [Электронный ресурс] : в 2 т. Т. 2 / под ред. М. А. Пальцева, В.С.Паукова.-М.:ГЭОТАР-Медиа,2011.-488с.-Режим доступа: http://www.studentlibrary.ru
- 12. Маянский Д. Н. Лекции по клинической патологии [Текст] : рук. для врачей / Маянский Д. Н. М. : ГЭОТАР-Медиа, 2008. 464 с. : ил.
- 13. Синельников А. Я. Атлас макроскопической патологии человека [Электронный ресурс] / Синельников А. Я. М. : Новая Волна, 2007. 320 с. : ил. Режим доступа: http://www.studentlibrary.ru/.