Лекция № 5.

Группа веществ, изолируемых из биологических объектов методом дистилляции. Общая характеристика группы.

Методология общего ненаправленного анализа дистиллятов на летучие яды.

Синильная кислота.

Проблема экспертизы алкогольного опьянения.

Одним из методов изолирования ядовитых веществ является *перегонка с* водяным паром. С помощью этого метода из биологического материала изолируются следующие группы веществ:

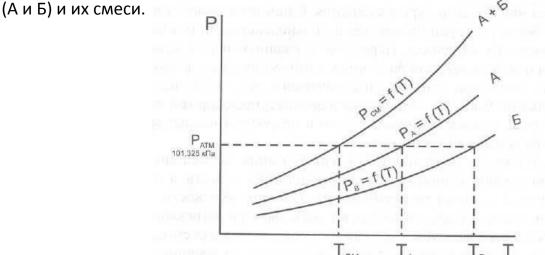
Синильная кислота НСМ

фосфорных кислот)

- Алкилгалогениды. CHCl3, C1₃C-CH(OH)₂, CCl₄, C₂H₄Cl₂ **2.**
- Альдегиды и кетоны алифатического ряда. СН₂О, СН3-СО-СН3 **3.**
- **Алканолы.** CH₃OH, C₂H₅OH, C₃H₇OH, C₄H₉OH, C₅H₁₁OH. Диолы. CH₂OH-CH₂OH **4.**
- Сложные эфиры алифатического ряда. Амилнитрит, амилацетат. **5.**
- Карбоновые кислоты алифатического ряда. СН3СООН **6.**
- Сероуглерод CS₂ **7.** 8.
- Элементоорганические соединения жирного ряда. $(C_2H_5)_4$ Pb (тетраэтилсвинец) **Ароматические углеводороды**. C_6H_6 (бензол), $H_3C-C_6H_5$ (толуол), ксилолы 9.
- $C_6H_5NO_2$ аминопроизводные И ароматического ряда.
- (нитробензол), $C_6H_5NH_2$ (анилин)
- **11.** Оксипроизводные ароматического ряда. C_6H_5OH (фенол), крезолы, кислота
- салициловая 12. Фосфор и первые продукты его окисления и восстановления. Н₃РО₂ (кислота фосфорноватистая), Н₃РО₃ (кислота фосфористая), РН₃ (фосфин), ФОСы (эфиры

ИЗОЛИРОВАНИЕ ЛЕТУЧИХ ЯДОВ ИЗ БИОМАТЕРИАЛА МЕТОД ДИСТИЛЛЯЦИИ С ВОДЯНЫМ ПАРОМ

- 1. Жидкости взаимно не растворимы
- 2. Жидкости <u>ограниченно растворимы</u> друг в друге (толуол, нитробензол, дихлорэтан, тетраэтилсвинец и др.)
- 3. Компоненты смешиваются в любых соотношениях (метанол, ацетон, формальдегид, этиленгликоль, уксусная кислота)


Двухфазная система

при нагревании смеси давление пара каждой жидкости будет таким же, как и давление ее пара в чистом виде, независимо от наличия другой жидкости. Каждая жидкость в смеси будет вести себя так, как будто отсутствует другая жидкость.

Закон Дальтона

Общее давление паров смеси (упругость) равно сумме парциальных давлений (упругостей) ее компонентов при данной температуре.

Рис. Диаграмма состояния (Р-Т) для двух несмешивающихся жидкостей

Р общее = Р воды +Р вещества

$$\begin{cases} \frac{W_0}{W_W} = \frac{M_0 P_0}{M_W P_W} \end{cases}$$

 $\begin{cases} \frac{W_0}{W_w} = \frac{M_0 P_0}{M_w P_w} \end{cases}$ где W_0 и W_w – масса органического вещества и вода M_0 и M_w – соответствующие молекулярные массы; P_0 и P_w - упругости паров. где W_0 и W_W – масса органического вещества и воды в дистилляте;

Азеотропными называются смеси, у которых пар, находящийся в равновесии с жидкостью, обладает теми же свойствами, что и сама жидкая смесь.

алкилгалогениды (хлороформ, ССІ₄), этиловый и изоамиловый спирты, фенол, анилин и др. Однофазная система

Если индивидуальная температура кипения вещества низкая (ацетон, метиловый спирт), то оно перегоняется быстро и полностью. При высокой $T_{\kappa u \pi}$ обычно полноты отгонки не достигается.

! Иногда используют 3 компонент(селективный переносчик)(бензол, при перегонке этиленгликоля)

Достоинства метода:

- 1. Происходит изолирование и одновременная очистка анализируемых веществ
- 2. Изолируются вещества, которые разлагаются при температуре кипения, имеют высокую температуру кипения и вещества нерастворимые в воде
- Извлекаются вещества разных классов химических соединений.

Недостатки метода:

- Длительность
- 2. Трудоемкость
- 3. Требуется специальная аппаратура
- Необходимость знания физико-химических параметров изолируемых веществ

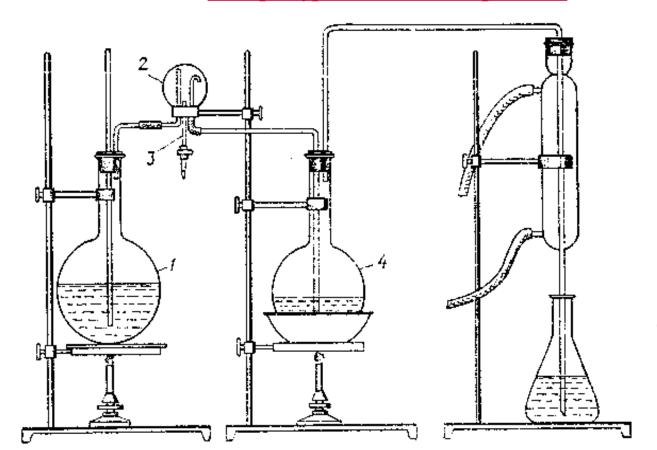
Объекты судебно-химического исследования с целью обнаружения «летучих ядов» :

внутренние органы трупа, кровь, моча, рвотные массы, пищевые продукты.

При подозрении на отравление **хлорорганическим**и веществами дополнительно направляется сальник и 1/3 головного мозга, **метанолом** - 1/3 головного мозга, этанолом - кровь из крупных вен, моча, мышечная ткань.

Изолирование летучих ядов

- •Измельчение объекта.
- •Смешивание с водой до густой кашицы.
- •Подкисление до рН 2-3 раствором щавелевой кислоты.
- •Перегонка.


Нельзя воспользоваться сильными минеральными кислотами, т.к. это привело бы:

1) к разрушению молекулы HCN (гидролиз), что приведет к ее потере и недооткрытию:

$$HCN \xrightarrow{H_2SO_4} NH_3 \uparrow + HCOOH.$$

2) к переоткрытию фенола в результате гидролиза его сернокислых эфиров, являющихся нормальной частью биологического материала:

Аппаратура и техника перегонки

Установка для изолирования летучих ядов перегонкой с водяным паром.

- 1 парообразователь;
- 2 –водоотделитель;
- 3 сливная трубка;
- 4 колба с объектом исследования;
 - 5 холодильник;
- 6 приемник дистиллята

<u>При проведении исследования на группу «летучих» ядов, необходимо обращать внимание на следующее:</u>

- 1. Запах объекта
- 2. Запах и внешний вид дистиллята. (маслянистые капли на поверхности дистиллята и характерный раздражающий запах сивушного масла (амиловые спирты), тяжелые капли

на дне дистиллята и сладковатый запах - хлороформ, дихлорэтан, четыреххлористый углерод. Фенол -характерный запах карболовой кислоты, молочновидное помутнение, и розоватые капли на дне приемника за счет продуктов окисления фенола.

Сбор дистиллята:

1-ю порцию дистиллята в количестве 3 мл собирают в 2 мл 5% раствора гидроксида натрия (по И.В.Герасимовой в смесь 2% растворов карбоната и гидрокарбоната натрия (1:1)).

При этом синильная кислота переходит в ее соль, и, таким образом, предотвращается ее потеря за счет высокой летучести:

$$HCN + NaOH = NaCN + H_2O$$
.

Весь объем первой порции дистиллята исследуют только на синильную кислоту.

2-ю порцию дистиллята отгоняют в объеме 25-50 мл. Она содержит вещества средней степени летучести (спирты, ацетон, алкилгалогениды и др.).

3-ю порцию дистиллята также собирают в объеме 25-50 мл. В ней содержатся труднолетучие вещества (формальдегид, этиленгликоль и др.).

СИНИЛЬНАЯ КИСЛОТА

Токсикологическое значение и метаболизм.

Источники отравления:

1. ядра горького миндаля, абрикоса, вишни, лавровишни и др. растений семейства Rosaceae, содержащие гликозид амигдалин

- 2. фасеолюнатин гликозид индийских бобов (Phaseolus lunatus)
 - H_3C C CH_3 $O_5H_{11}C_6O$ CN

- 3. линамарин гликозид семян льна
- 4. манник водяный, содержащим гликозид, отщепляющий НСМ
- 5. дициан $[(CN)_2]$, хлор- и бромцианы (ClCN, BrCN)
- 6. горение целлулоида, шерсти и полимерных материалов
- 7. Следы НС содержатся также в табачном дыме!

Смертельная доза чистой синильной кислоты - 0,05 — 0,1 г; цианида калия 0,15—0,25 г, ядер горького миндаля - 40—60 штук, а у детей —10—12 шт,

Горькоминдальной воды (Aqua Amygdalarum amararum) - 60—100 мл

Поступление в организм:

- с вдыхаемым воздухом,
- всасываться через кожные покровы,
- через пищеварительный канал, через ЖКТ.

Механизм действия:

Цианиды стабилизируют железо цитохромоксидазы в трехвалентном состоянии, что полностью **нарушает клеточное** дыхание.

Наступает тканевая гипоксия, несмотря на то, что кровь насыщена кислородом.

Наиболее чувствительны к дефициту кислорода клетки ЦНС.

Кроме этого, цианиды нарушают деятельность более 20 ферментных реакций.

Такое многогранное действие приводит к стремительному развитию интоксикации и быстрой смерти пострадавшего.

Биотрансформация синильной кислоты

1. Гидролиз

$$HCN + 3H_2O \longrightarrow H_2O + HC \bigcirc O + NH_3$$

2. Превращение в роданиды под влиянием фермента роданазы:

- 3. Соединение с гемоглобином крови.
- 4. Связывание с цистеином.
- 5. Присоединение к веществам, содержащим альдегидную группу, например к сахарам:

$$HCN+R-C \nearrow O \longrightarrow R-C \nearrow H \longrightarrow CN$$

При хранении: $KCN + CO_2 + HOH = KHCO_3 + HCN$

Качественное обнаружение синильной кислоты

1. реакция образования берлинской лазури.

$$NaOH + HCN = NaCN + H2O$$

$$FeSO4 + 2NaCN = Fe(CN)2 + Na2SO4$$

$$Fe(CN)2 + 4NaCN = Na4[Fe(CN)6]$$

$$3Na4[Fe(CN)6] + 2Fe2(SO4)3 = Fe4[Fe(CN)6]3 + 6Na2SO4$$

Заключение о не нахождении синильной кислоты можно дать с полной уверенностью, если через 48 ч синяя окраска раствора и синий осадок не обнаружены.

Оценка. Реакция чувствительна (можно обнаружить 20 мкг синильной кислоты в 1 мл раствора), специфична. Осадок берлинской лазури может быть представлен судебно-следственным органам как доказательство, что синильная кислота обнаружена в объекте.

2. Реакция образования берлинской лазури на тест-бумаге. Наблюдают образование пятна синего цвета (берлинская лазурь) на общем белом фоне. Оценка. Предел обнаружения составляет 0,3 мкг синильной кислоты в пробе. Реакция применима при анализе объектов, подвергшихся гнилостному разложению.

3. Реакция образования полиметинового красителя с помощью пиридин-

фиолетовое.

бензидинового реактива. К части дистиллята добавляют 0,5 мл бромной воды, 1 мл 10% раствора трихлоруксусной кислоты, а затем 0,5 мл 0,5% раствора гидразина сульфата. В раствор вносят 3 мл пиридин-бензидиновой смеси - наблюдают образование оранжевого окрашивания, постепенно переходящего в красно-

красное окрашивание глутаконовый

Оценка. Предел обнаружения составляет 0,2 мкг синильной кислоты в исследуемой пробе. Продукты гнилостного разложения биологического объекта не мешают ее определению.

альдегид

4. Микрокристаллоскопическая реакция образования цианида серебра.

Часть дистиллята испаряют и остаток переносят на предметное стекло. К сухому остатку добавляют каплю 10% раствора азотной кислоты, по одной капле 1% раствора метиленовой сини и 1% раствора нитрата серебра. Под микроскопом наблюдают образование кристаллов в виде длинных игл и сростков из них голубого цвета.

$$NaCN + AgNO_3 \rightarrow AgCN \downarrow + NaNO_3$$

Оценка. Предел обнаружения составляет 0,1 мкг синильной кислоты в исследуемой пробе. Реакция применима в присутствии продуктов гнилостного разложения объекта.

Количественное определение синильной кислоты проводится:

- 1. фотоколориметрическим методом
- 2. титриметрическим методом.

Проблема экспертизы алкогольного опьянения

Токсикологическое значение спиртов

Метиловый спирт:

- -растворитель,
- -исходное сырье для синтеза лекарственных веществ, красителей,
- -для производства формальдегида, применяемого при изготовлении пластмасс,
- -в качестве антифриза и стеклоочистителя
- -для денатурирования этанола.

Амиловый (изоамиловый) спирт:

- -растворитель,
- -для синтеза сложных органических веществ,
- -главная составная часть сивушного масла побочного продукта спиртового брожения.

Этиловый спирт:

- -растворитель,
- -для синтеза органических веществ, в пищевой, фармацевтической, парфюмерной промышленности
- -добавка к моторным топливам для повышения октанового числа и снижения концентрации вредных веществ в выхлопных газах,
- -чаще выступает не как яд, а как отягчающее обстоятельство, являясь косвенной причиной большого числа смертельных исходов,
- -сопутствует различным ядовитым и сильнодействующим веществам в случае отравления с целью самоубийства, либо преступного отравления

Токсичность спиртов

Токсичность возрастает с увеличением числа атомов углерода, примерно 3:1 (правило Ричардсона). Исключением является поведение первых членов гомологических рядов, которые отличаются очень высокой токсичностью.

Токсикокинетика спиртов

Всасывание (резорбция).

- Через желудочно-кишечный тракт и легкие. Всасывание начинается быстро, уже во рту и пищеводе, но основная масса спирта всасывается в желудке или кишечнике.
- Механизм всасывания спирта простая диффузия.
- При приеме натощак максимальная концентрация этанола в крови наблюдается через 40-80 мин (в среднем около 1 часа), при полном желудке через 1,5-2,5 часа.

Транспорт (распределение).

- Через кровь этанол распространяется по органам и тканям, концентрируется в тканях пропорционально содержанию в них воды.
- Наибольшие количество спирта содержатся в биологических жидкостях (кровь, моча, спинномозговая жидкость) и головном мозге. Несколько меньше его в тканях, мышцах, и минимальное количество в жировой ткани.
- Небольшие количества этилового спирта могут присутствовать в биоматериале вследствие естественных процессов при гниении крови и других органов трупа.

Выделение (элиминация).

Протекает по механизму простой диффузии и происходит через легкие, кожу, почки, кишечник, слюнные железы в виде метаболитов. Только 10% этанола выделяется в неизмененном виде, из них 7% - через легкие, 2-2,5% - почками.

Метаболизм (биотрансформация)

Окисление первичных спиртов происходит по схеме: спирт—альдегид—кислота, вторичных: спирт—кетон—кислота

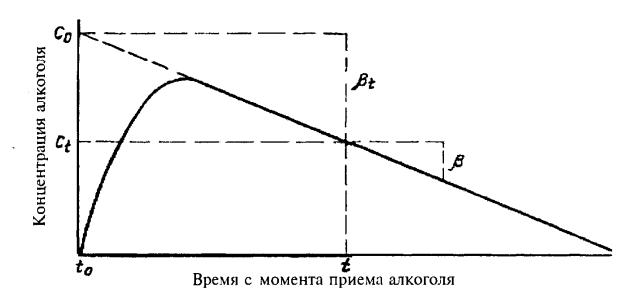
Первая стадия окисления спиртов (принимают участие 4 ферментные системы):

- 1. Алькогольдегидрогеназа (АДГ) R-CH₂-OH + HАД⁺ \rightarrow R-CH=O + HАДН +H⁺
- 2. Микросомальная этанолокисляющая система (МЭОС) R-CH₂-OH + HАДФН + H+ + O₂ \rightarrow R-CH=O + HАДФ+ + 2H₂O
- 3. Каталаза $R-CH_2-OH + H_2O_2 \rightarrow R-CH=O + 2H_2O$
- 4. Ксантиноксидаза

Второй этап биотрансформации (метаболизм альдегидов осуществляется тремя группами ферментов):

1. Альдегиддегидрогеназами

$$R$$
-CH=O + HAД+ (HАДФ+) + H₂O \rightarrow R -CH₂-COOH + HАДH (HАДФН) + 2H+


- 2. Альдегидоксидазами
- 3. Альдегидлиазами

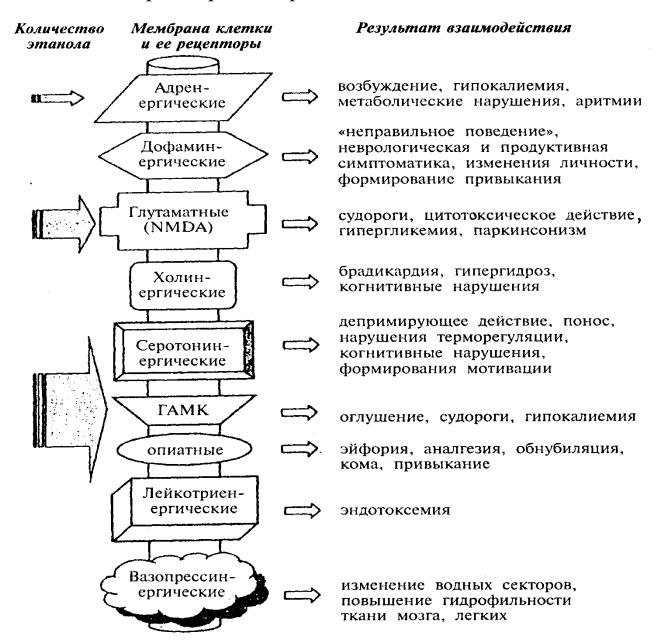
Третий и последующие этапы.

Образующиеся кислоты могут подвергаться дальнейшей ферментной биотрансформации, вступать в реакции конъюгации, включаться в обменные процессы, и выводиться из организма, главным образом с мочой

Токсическое действие спиртов

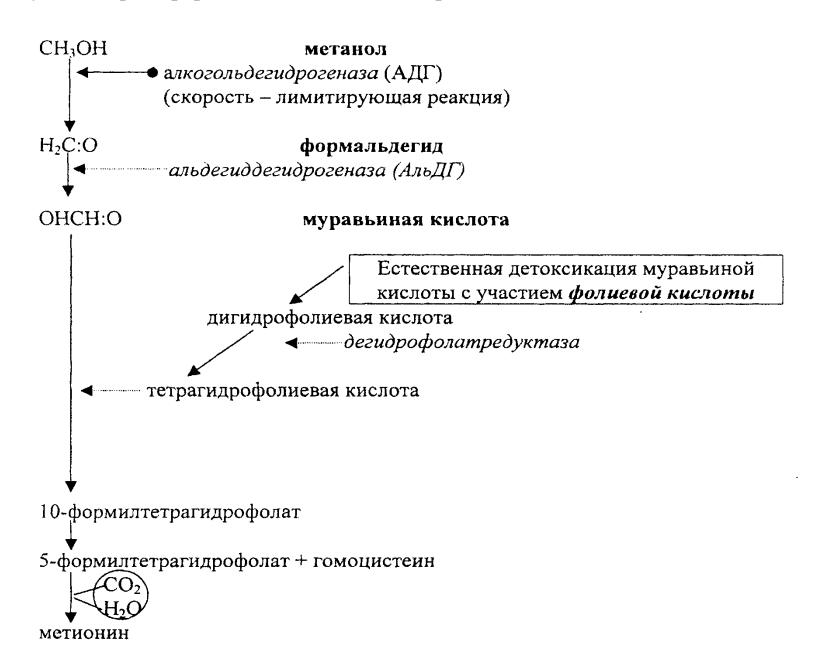
2 фазы: резорбции и элиминации

Содержание алкоголя в крови в фазе резорбции


Количество содержания этанола в организме в момент окончания приема спиртных напитков

$$A = P \cdot r \cdot (C_t + \beta_{60} \cdot T)$$

Где P – масса тела, кг, C_t – концентрация алкоголя в крови в момент исследования, T – время, ч, прошедшее после приема спиртных напитков до исследования, r - фактор редукции этанола, β_{60} - фактор элиминации


Механизм токсического действия и патогенез интоксикации этанолом

Взаимодействие этанола с некоторыми рецепторами и его клинические последствия

Метиловый спирт

Основные пути биотрансформации метилового спирта

Метиловый спирт

Механизмы окулотоксического действия метанола

Объекты исследования и пробоподготовка

- При смертельном отравлении кровь и моча, реже ткани мозга, легких, печени, почек, редко глубокие мышцы бедра
- При диагностике состояния алкогольного опьянения в наркологической практике выдыхаемый воздух, слюна, кровь, моча.

Правила отбора проб для исследования

- Моча отбирается в сухой стерильный флакон «под пробку». Флакон тотчас же закрывают пробкой. Отбор пробы мочи должен производиться в условиях, исключающих подмену или замену ее другими жидкостями.
- Слюна отбирается в стерильный сухой флакон из-под пенициллина в количестве 5 мл и тут же закрывается пробкой.
- Перед отбором пробы <u>крови</u> в сухой стерильный флакон из-под пенициллина закапывают 1-2 капли <u>гепарина</u> или 0,8 мл 3,8%-го раствора цитрата натрия и встряхиванием флакона смачивают его стенки.
- <u>Кровь</u> В количестве 5 мл отбирается пункцией кубитальной вены при строгом соблюдении асептических условий самотеком во флакон, обработанный гепарином или цитратом. Флакон тотчас же закрывают стандартной резиновой пробкой, фиксируют пробку и содержимое флакона перемешивают. Кожа в месте пункции предварительно обрабатывается раствором антисептика. **Дезинфекция кожи спиртом, эфиром, настойкой йода не допускается.**

Сопроводительная документация:

- "Направление на химико-токсикологическое исследование"
- "Справка о доставке проб на химико-токсикологическое исследование" заполняются по установленным формам и передаются в химико-токсикологическую лабораторию (ХТЛ) вместе с пробами.

Клиническая диагностика.

Проводится на основании оценки психической сферы и поведения, выявления неврологических и сердечно-сосудистых нарушений. Как правило, при алкогольном опьянении отмечаются три симптомокомплекса:

Простые типы опьянения.

- 1. Алкогольная эйфория. Она возникает после приема сравнительно небольших доз алкоголя и непродолжительна длится 1-3 часа. Основные признаки повышенная речевая и моторная активность, расторможенность поведения.
- 2. Дисфорическое состояние раздражительность, недовольство. Больные угрюмы, озлоблены, возможно агрессивное поведение
- 3. Состояние психомоторной заторможенности: вялость, медлительность, сонливость, нарушение мышления и памяти. Такие расстройства часто возникают после употребления больших доз алкоголя.
- В зависимости от характера и выраженности клинических проявлений выделяются следующие степени опьянения:
- 1. Легкая степень
- 2. Средняя степени
- 3. Тяжелая степень
- 4. Алкогольная кома

МЕТОДЫ АНАЛИЗА

В СУДЕБНО-ХИМИЧЕСКОЙ ЭКСПЕРТИЗЕ ОТРАВЛЕНИЙ И ЭКСПЕРТИЗЕ АЛКОГОЛЬНОГО ОПЬЯНЕНИЯ

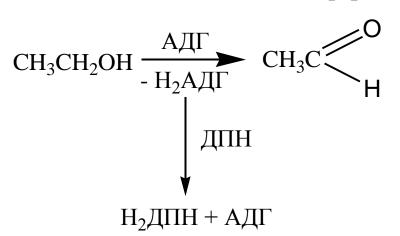
1. Реакция этерификации

2. Реакция окисления

Реакции отличия:

- 1) для CH₃OH окисление до H_2 CO с последующим его обнаружением цветными реакциями.
- 2)для С₂Н₅ОН реакция образования кристаллического осадка йодоформа.
- 3)для C_5H_{11} OH реакция отличия высших спиртов (C_3 - C_5) от низших (CH3OH и C_2H_5 OH) взаимодействие с ароматическими альдегидами салициловым, п-диметиламинобензальдегидом и другими (реакция Комаровского).

Предварительные пробы


- К 1 мл мочи добавляют 10% раствор дихромата калия в 50% растворе серной кислоты раствор окрашивается в зеленый цвет.
- <u>Дополнительные пробы:</u> кровь (5 мл) или мочу (10 мл) подвергают перегонке с водяным паром, а затем проделывают реакцию образования йодоформа на этанол и реакцию окисления метанола до формальдегида.

Методы определения алкоголя в выдыхаемом воздухе

- I. <u>Проба Рапопорта А.М.</u>
- II. <u>Индикаторные трубки Мохова-Шинкаренко и «Контроль трезвости».</u>
- III. <u>Термокаталитический метод</u>.

КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ СПИРТОВ

Метод биохимический (энзимный, ферментативный, метод АДГ)

Судебно-химическая оценка метода. Метод чувствителен (0,1-0,2%) на уровне естественного содержания этанола в организме, специфичен, позволяет проводить серийные анализы, однако требует специального оборудования и особо чистых ферментов (АДГ и ДПН), в связи с чем в нашей стране не нашел применения.

алкогольдегидрогеназа (АДГ) катализирует окисление этилового спирта в уксусный альдегид.

Акцептором водорода в данной реакции является дифосфопиридиннуклеотид (DPN), который в виде восстановленной формы адсорбирует ультрафиолетовые лучи в области 366 ммк.

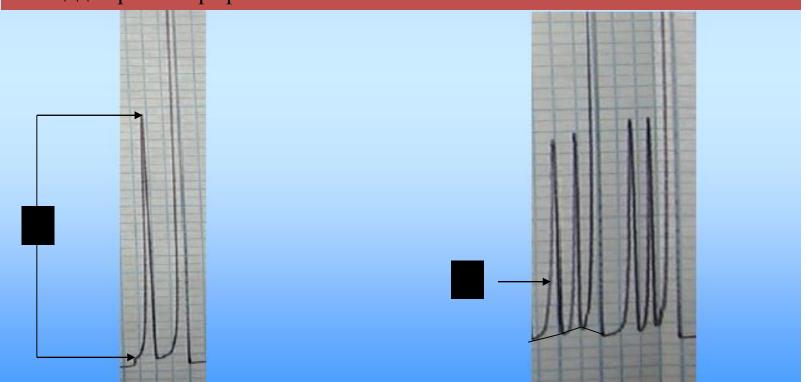
Метод газожидкостной хроматографии (ГЖХ)

основан на переведении этанола в более летучее соединение - этиловый эфир азотистой кислоты (этилнитрит).

Достоинства метода ГЖХ.

- Высокая разделяющая способность
- Универсальность метода.
- Возможность качественного и количественного определения в одной пробе.
- Высокая чувствительность (10⁻⁵ 10⁻⁹ г).
- Возможность выполнения анализа в малом объеме образца (0,5-2 мл биожидкости).
- Точность метода (ошибка не превышает 1-2%).
- Экспрессность (время определения 3-5 минут)
- Простота и легкость выполнения.
- Доказательность и объективность.

Газо-жидкостная хроматография


Инструментальный метод анализа, в основе которого лежит хроматографическое разделение веществ в зависимости от их физико- химических свойств, позволяет сочетать идентификацию и количественную оценку.

Примерные хроматограммы

Хроматограмма – кривая зависимости сигнала детектора от объема газа-носителя, пропущенного через колонку, и времени

Для расчетов используют либо высоту – h, либо площадь хроматографического пика – S

Газовый хроматограф с устройством для автоматического ввода пробы

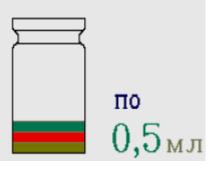
Газовый хроматограф с устройством для ручного ввода пробы

Методика газохроматографического анализа на этанол и другие алифатические спирты

Методика подразделяется на несколько этапов:

- 1.Построение калибровочного графика.
- 2.Проведение качественного анализа. Расчет времени удерживания.
- 3.Проведение количественного исследования.
 - Качественный анализ.
 - Принципиальная схема превращения спиртов в эфиры (алкилнитриты).
 - R-OH + Na NO2 + кисл.среда= R- NO + H2O
 где R- (CH3-; C2H5- и.тд.)
- Методика: 0,5 мл пробы помещают во флакон, добавляют 0,5 мл трихлоруксусной кислоты, флакон плотно закрывают фиксирующей пробкой, тщательно перемешивают и вводят 0,35 мл нитрита натрия, встряхивают, через 1 мин отбирают 0,2 см3 паро-газовой фазы на анализ.

Подготовка биологической пробы к анализу

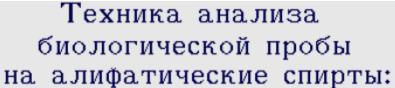

В этом вопросе существует два подхода

- прямой парофазный (парогазовый) анализ
- пробоподготовка, основанная на дериватизации анализируемых соединений.

Техника анализа биологической пробы на алифатические спирты:

Реактивы:

- *1. Кислота ТХУ **——***2. Пропанол**-**1
- **ж** 3. Проба


Техника анализа биологической пробы на алифатические спирты:

Реактивы:

- *1. Кислота ТХУ *2. Пропанол-1
- **ж**3. Проба

$$ROH + HNO_2 = RNO_2 + H_2O$$

Техника анализа биологической пробы на алифатические спирты:

Реактивы:

- 1. Кислота ТХУ
- 2. Пропанол-2
- 3. Натрия нитрит

30 pas

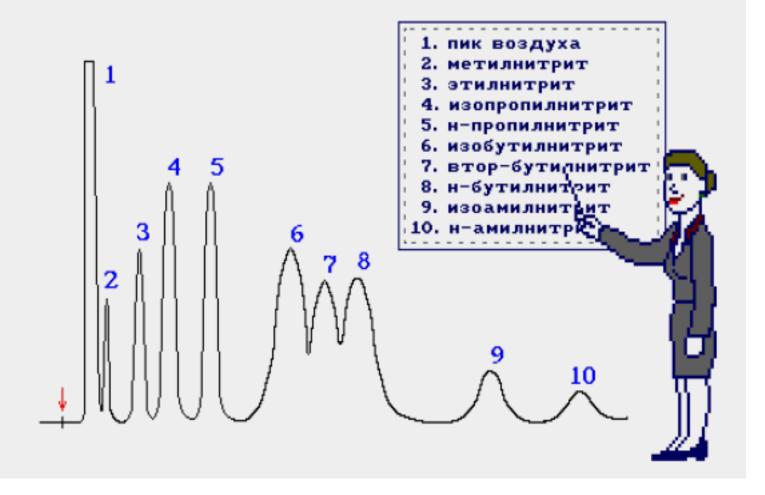
Техника анализа биологической пробы на алифатические спирты:

Реактивы:

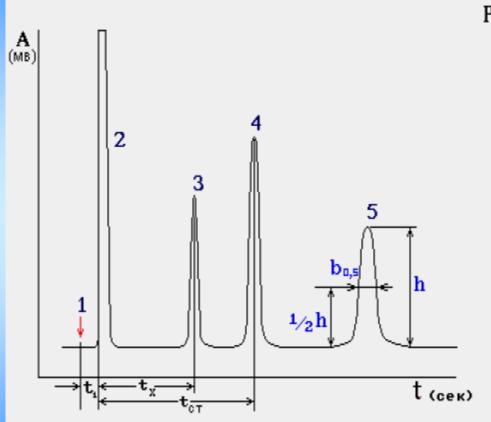
- 1. Кислота ТХУ 1 мин.
- 2. Пропанол-2
- 3. Натрия нитрит 📟

Методика подразделяется на несколько этапов и выглядит следующим образом:

1. Проведение качественного анализа. Расчет времени удерживания.


2. Построение калибровочного графика.

3. Проведение количественного исследования.


Качественный анализ.

Расчет времени удерживания.

Хроматограмма алкилнитритов.

Основные параметры хроматограммы

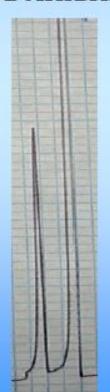
Расчетные параметры:

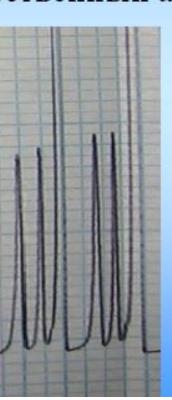
Абсолютные

$$V_{r_x} = u \cdot t_{r_x}$$

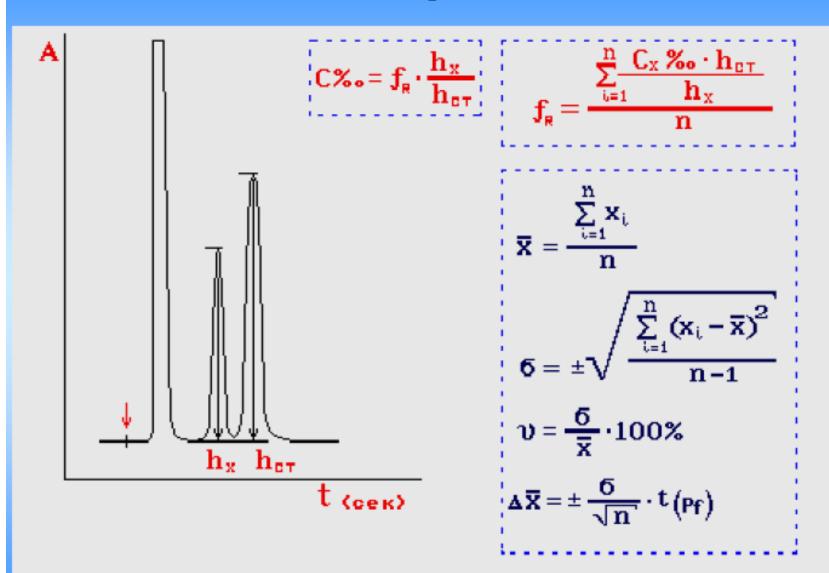
$$V_{o_X} = j_{\mathbf{h}} V_{\mathbf{r}_X}$$
$$j_{\mathbf{h}} = \frac{3(p_{\mathrm{BX}} - 1)}{2(p_{\mathrm{BBS}} - 1)}$$

Относительные

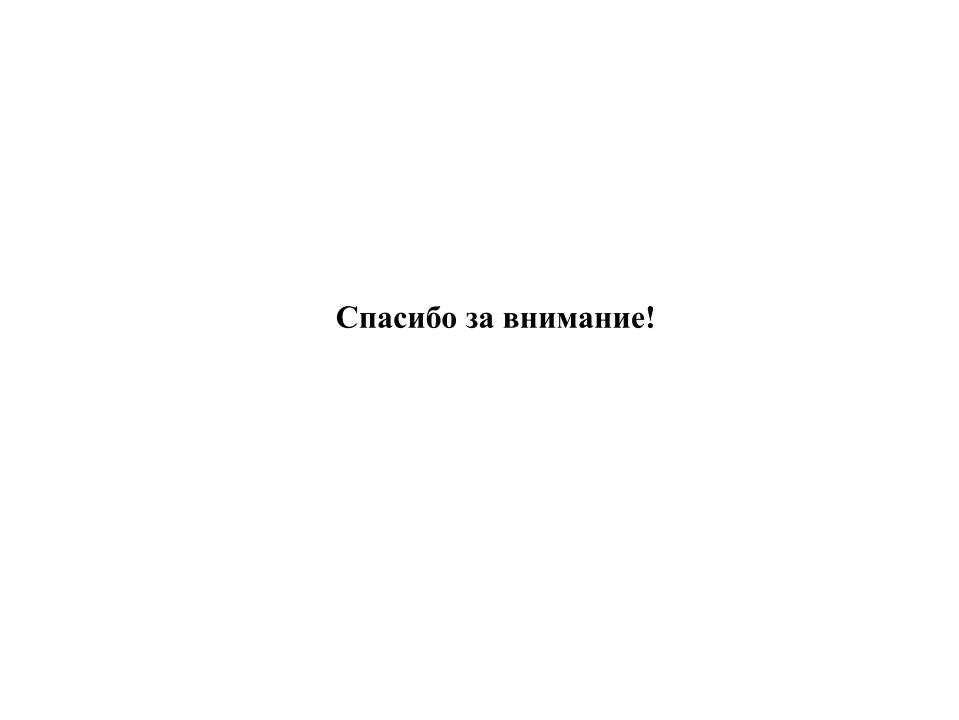

$$t_g = \frac{t_{P_X}}{t_{CT}}$$


$$V_g = \frac{V_{r_x}}{V_{cx}}$$

Индекс Ковача
$$J=100\,n+100\,\frac{1g\,V_{o_X}-1g\,V_{Cn}}{1g\,V_{Cn+1}-1g\,V_{Cn}}$$


Количественное исследование биологических объектов (кровь, моча, слюна) на этанол.

качественный анализ количественный анализ



Расчет концентрации этанола

Оценка результатов количественного определения этанола в крови человека

Содержание этанола в крови, промилле	Степень опьянения	Признаки
Менее 0,3	Отсутствие влияния алкоголя	
0,3-0,5	Незначительное влияние алкоголя	Клинический диагноз не может быть установлен
0,5-1,5	Легкая степень опьянения	Легкое нарушение координации движении
1,5-2,5	Опьянение средней степени	Возбуждение, иногда опасное для окружающих, шатающаяся походка, неясная речь, нарушение психики и ориентировки, иногда резкая сонливость
2,5-3,0	Сильное опьянение	Ступор (оглушение), снижение болевой чувствительности до полной анестезии. Начальные признаки острого отравления. Возможен смертельный исход.
3,0-5,0	Тяжелое отравление алкоголем, возможно наступление смерти	Кома, опасное для жизни состояние.
Свыше 5,0	Смертельное отравление	

