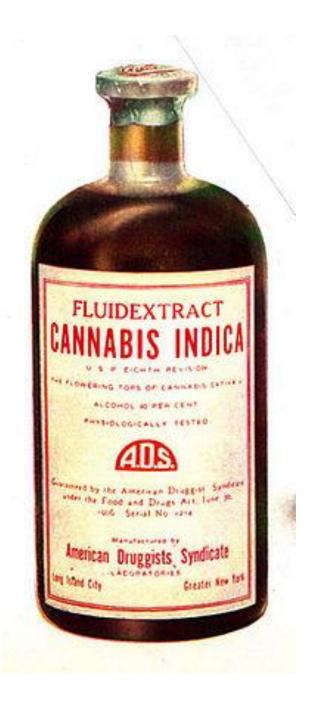

Лекция № 5

Химико-токсикологический анализ тропановых алкалоидов, каннабиноидов и фенилалкиламинов


Saturday, Sept. 26, Madison WI assentite 11 AM Library mail, 2 PM parade to State Capitol Filers. NORML 011 Williamson St. Madison WI 53703 Info: (600)-257-163MP. Vendors please call shead.

История применения марихуаны

как психоактивного, одурманивающего вещества насчитывает по меньшей мере 30-50 веков. Первые упоминания есть и у ацтеков, и в Индии и в других странах в 3 тысячелетии до нашей эры.

- Марихуана в медицине находила широкое применение в качестве обезболивающих, противоэпилептических, противосудорожных и противорвотных средств уже с XVIII века до нашей эры.
- Первые упоминания об использовании марихуаны в европейской медицине относятся к периоду колонизации Индии Англией, в середине XIX века, когда армейские хирурги стали применять препараты марихуаны для обезболивания, лечения мышечных спазмов, припадков эпилепсии и ревматизма.
- в России в дореволюционной фармакопее 6 изд -спб-1910 есть препараты индийской конопли экстракт на стр 141-142 сушеные соцветия женских растений с 222-223.
- в фармакопее СССР 7 изд- три препарата индийской конопли экстракт с 157-158 трава с 244-245 и настойка

Выделяют три основных вида конопли:

Cannabis sativa,
Cannabis indica
Cannabis ruderalis,
содержит наименьшее количество
тетрагидроканнабинола

ФОРМЫ

- МАРИХУАНА высушенная и измельченная верхняя часть растения с листьями и цветками, содержание в которых активных веществ наиболее высоко. Содержание психоактивных веществ 13-15% (ранее эти величины были значительно ниже 0,5%).
- ГАШИШ (hash) смола (смолка), производимая каннабисом в определенный период вегетации, зеленого, темно-коричневого или черного цвета. Содержание основного психо- активного вещества (ТГК) обычно около 2%, но может достигать и 9-10%.
- ГАШИШНОЕ МАСЛО концентрированный темный жидкий и вязкий по консистенции экстракт растительного материала или смолы с содержанием психоактивных веществ (ТГК) от 10 до 30-60%.

БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ

этих средств при хранении в этаноле или в кунжутном масле сохраняется долгое время, но при хранении на свету или при доступе кислорода со временем уменьшается из-за деградации основного активного компонента.

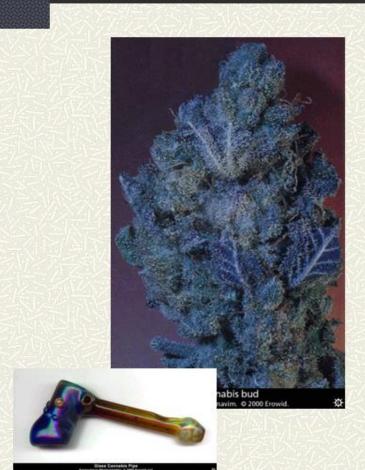
Различия конопли посевной и конопли индийской

- Конопля посевная (Cannabis sativa) представляет собой травянистое растением высотой от 2 и 4 м. Листья длинные, тонкие, бледно-зеленого цвета. Растения, растущие в более теплом климате накапливают больше желтых пигментов, защищающих их от интенсивного света. Семена удлинены, тонки, красноватого цвета; в более северных регионах слегка фиолетовые. На вкус растения имеют сладкий фруктовый запах. При курении выделяют относительно не много дыма. Источник волокна для веревки и других изделий, и содержит ТНС. Наибольшее количество его в верхушечных частях и молодых побегах.
- Конопля индийская (Cannabis indica) широко распространена в Ближнем Востоке, Индии и Средней Азии, особенно, Афганистане, Кашмире и Пакистане. Растение высотой от 1 до 2 м с короткими, широкими листьями темно-зеленого, иногда, с оттенком фиолетового цвета, обладающее сильным запахом. Основной источник гашиша.

ОСНОВНЫЕ КОМПОНЕНТЫ

- 1. Δ⁹-тетрагидроканнабинол (ТГК)-вещество обладающее психоактивным действием
- 2. **\(\Delta \)**8-тетрагидроканнабинол в свежесобранном материале отсутствует
- 3. Каннабинол (КБН) в десять раз менее активен чем ТГК
- 4. Каннабидиол (КБД) не обладает психоактивностью
- Минорные в зависимости от вида сырья: каннабидиварин, каннабиварин, каннабихромин, каннабихромин, каннабициклол и бутиловые аналоги ТГК

СПОСОБЫ УПОТРЕБЛЕНИЯ


- КУРЕНИЕ (ВДЫХАНИЕ ДЫМА) для курения используют сигареты с марихуаной 500-750 мг при содержании активного компонента ТГК 1—4%) или обычные табачные сигареты с добавкой гашиша или небольшого количества гашишного масла. Иногда для курения используют особые стеклянные трубки. Также распространено вдыхание паров масла, нагреваемого в пламени на алюминиевой фольге или на лезвии ножа.
- ОРАЛЬНОЕ ПОТРЕБЛЕНИЕ (жевание, в виде заварки или как добавка к пище).
- ВНУТРИВЕННОЕ ВВЕДЕНИЕ применяют редко.

Наркотические дозы конопли

- **■** Эффективная доза при курении 25 50 мкг/кг
- Обычно «наркотические сигареты» содержат 300 750 мг марихуаны с содержанием ТГК до 15% (в последнее время и до 40%).
- **■** Средняя суточная доза 2 «сигареты».

Употребление препаратов конопли

- Препараты конопли как правило применяется для курения, реже для жевания.
- ⇒ Эффект наступает через 20 30 мин после курения с максимумом спустя 1 2 часа и продолжительностью 4 6 часов. Однако стимулирующий эффект может продолжаться и после 24 часов.

Всасываение и распределение ТГК

- ТГК почти полностью адсорбируется (90 95 %) после разовой пероральной дозы
- Вследствие комбинированных эффектов, связанных с метаболизмом в печени и высокой липофильности только 10-20% дозы достигает системного кровообращения.
- ТГК имеет большой объем распределения, около 10 л/кг и более 95% его и его метаболитов связываются с белками крови.
- Фаза выделения ТГК описывается двухкомпартментной моделью с начальной фазой, имеющей период полувыведения около 4 часов, и фазой бета с периодом полувыведения от 25 до 36 часов.
- В связи с большим объемом распределения метаболиты ТГК могут находиться в моче на низком уровне в течение длительного времени.

$$H_3$$
 ОН H_3 ОН

Метаболизм

- ТГК подвергается интенсивному метаболизму в микросомах печени образуя большое количество гидроксилированных как активных, так и нет метаболитов.
- □ Основным активным метаболитом является 11-ОН-ТГК, который присутствует в примерно одинаковых количествах с ним плазме крови. В моче основным метаболитом является ТГК-СООН.
- При пероральном приеме ТГК в плазме крови он присутствует главным образом в виде глюкуродидов кислых метаболитов.
 - При курении или внутривенном введении в крови основная масса кислого метаболита находится в свободном виде.
 - 8,11-ДИ-ОН-ТГК метаболит выводится с мочой в виде глукуронида и может быть обнаружен после гидролиза. Его присутствие в моче на уровне более 15 нг/мл указывает на вероятное потребление марихуаны не более чем за 6 часов до момента отбора образца.

Выделение ТГК

- ТГК и его основные метаболиты выводятся из организма главным образом с фекалиями и мочой.
- При этом около половины дозы выводится в течение 72 часов с фекалиями, около 10 – 15% с мочой.
- Менее 5% принятой дозы выводится в неизменном виде с фекалиями.
- После употребления разовой дозы низкие концентрации метаболитов ТГК могут быть обнаружены в моче в течение 5 недель.

ПАССИВНОЕ КУРЕНИЕ

Ситуация с пассивным потреблением марихуаны (так называемое «пассивное курение») может возникнуть, когда некурящий находится в непроветриваемом замкнутом пространстве (автомашина или небольшая комната) одновременно с одним или несколькими курящими и длительность сеанса курения составляет по меньшей мере один час. За 8 ч «пассивного курения» некурящий получает ингаляционную дозу около 16 мкг ТГК. При этом в моче детектируются ТГК и ТГК- СООН. с концентрацией ТГК-СООН 4,4 нг/мл.

Объекты анализа на каннабиноиды и их подготовка к исследованию

- Смывы с губ, ладоней, пальцев рук. Протирают смоченным спиртом тампоном из марли или ваты. Из тампонов исследуемые соединения экстрагируют органическим растворителем (гексаном, этилацетатом или петролейным эфиром). Экстракты упаривают до объема 0,2-0,4 мл и подвергают анализу.
- Слюна и смывы со рта. Отбирают 10 мл слюны или ополаскивают рот 50 мл 70% этанола, к которому до насыщения добавлен хлорид натрия (с целью исключения возможности проглатывания). Каннабиноиды повторно экстрагируют этилацетатом. Экстракты упаривают и анализируют.
- *Плазма*. 5 мл плазмы экстрагируют смесью петролейного эфира, содержащего 1,5% пентанола по объему. Экстракт упаривают до нескольких капель и исследуют.
- *Моча*. 50 мл мочи подвергают щелочному гидролизу и образовавшуюся Д9-ТГК-кислоту после подкисления экстрагируют органическим растворителем, упаривают, переводят в метиловый эфир и анализируют методами ГЖХ и ГХ-МС.
- Волосы. Для анализа используют хроматомасс-спектрометрию
- Образцы наркотических средств (гашиш, марихуана, гашишное масло). Навеску образца берут в количестве 0,5-1 г и экстрагируют в течение 1 ч десятикратным количеством 96% этилового спирта, фильтруют, упаривают до небольшого объема и анализируют.

Методы обнаружения каннабиноидов

Для обнаружения каннабиноидов в извлечениях из объектов используют

- химический метод,
- хроматографию в тонком слое сорбента,
- ΓЖХ,
- ВЭЖХ,
- ΓX-MC
- иммуноферментный метод.

При анализе образцов наркотических средств анализ сочетается с микроскопическим исследованием

Реакции окрашивания (предварительное исследование).

1. Экстракт из объекта в объеме нескольких капель наносят на фильтровальную бумагу, подсушивают и обрабатывают 0,5% раствором **прочного синего Б** в 10% растворе гидрокарбоната натрия. Каннабиноиды обнаруживаются на бумаге в виде пурпурнокрасного пятна.

2. К части экстракта добавляют ацетальдегид, раствор ванилина в 96% этиловом спирте, концентрированную хлороводородную кислоту и 1 мл хлороформа. При встряхивании слой хлороформа окрашивается в фиолетовый цвет.

Реакциям придают судебно-химическое значение при получении отрицательного результата.

Хроматография в тонком слое сорбента.

Анализ проводят на хроматографических пластинках «Силуфол». На стартовую линию хроматограммы наносят экстракт, полученный из слюны, плазмы крови, смывов со рта, мочи и помещают в систему растворителей nemponeйный эфир - диэтиловый эфир (4:1).

Хроматографирование осуществляют двукратно.

После подсушивания пластинку обрабатывают 0,5% раствором прочного синего Б в 10% растворе карбоната (или гидрокарбоната) натрия. Каннабиноиды на пластинке проявляются в виде окрашенных полос или пятен красного, пурпурного, оранжевого цвета (каннабинол образует пятно с Rf 0,76 пурпурного цвета, тетрагидроканнабинол - с Rf 0,84 красного цвета).

Иммуноферментный метод.

Этот метод отличается простотой выполнения и высокой чувствительностью. С его помощью можно обнаружить многие метаболиты каннабиноидов.

У лиц, хронически употребляющих каннабиноиды, после последнего употребления этим методом можно их обнаружить в течение *77 дней*, а у периодически употреблявших - в течение *29 дней*.

Метод ГЖХ.

Используется хроматограф Agilent 6890N, с капиллярными колонками длиной до 30 м, режимом постоянного давления 17 пси. Объем вводимой пробы - 1 мкл. Температура термостата колонок программируется от 200 до 280°С (10°С/мин). Температура детектора - 300°С, поток водорода - 30 мл/мин. Температура испарителя - 270°С. Время удерживания Д9-ТГК составляет в данных условиях 7,57 мин.

Метод ВЭЖХ.

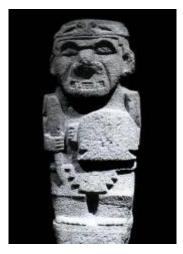
Этот метод отличается большей селективностью, чем ТСХ и реакции окрашивания. Для обнаружения используется жидкостный хроматограф «Милихром А-02». Обнаружение каннабиноидов ведут по удерживаемому объему или времени удерживания и по спектральным отношениям при нескольких длинах волн.

Метод газовой хроматографии в сочетании с масс-спектрометрией После подготовки пробы мочи к анализу и метилирования Д9-ТГК-кислоты пробу вводят в хромато-масс-спектрометр. Метиловый эфир Д9-ТГК-кислоты имеет характерные отношения масса/заряд (m/z): 372, 357 и 313. Для Д9-ТГК характерны масс-фрагменты m/z 314, 299, а для метилового эфира Д9-ТГК - фрагменты с отношением m/z 328, 313.

Количественное определение

Метод газовой хроматографии. Определение проводят по площади или высоте пика анализируемого вещества и внутреннего стандарта. В качестве внутреннего стандарта используют аналог исследуемого вещества, меченного стабильным изотопом, в частности, дейтерированные соединения. Хроматографический внутренний стандарт добавляют в анализируемую пробу непосредственно перед вводом в хроматограф в концентрации, сопоставимой с концентрацией анализируемого вещества. Чтобы контролировать весь процесс пробоподготовки и анализа, внутренний стандарт часто рекомендуют добавлять к аликвоте биожидкости, отобранной для гидролиза или изолирования. В этом случае внутренний стандарт подвергается всем операциям вместе с анализируемым веществом. В таком варианте использования внутреннего стандарта результаты количественного определения будут более точными и воспроизводимыми. Содержание каннабиноидов рассчитывают по калибровочному графику, выражающему зависимость высоты (площади) пика ионов анализируемого вещества (внутреннего стандарта) от концентрации в диапазоне 1,0-10,0 $MK\Gamma/MЛ.$

Высокоэффективная жидкостная хроматография. Определение концентрации каннабиноидов проводят, используя метод добавок, метод внутреннего или внешнего стандарта.


ЗАКЛЮЧЕНИЯ ПО РЕЗУЛЬТАТАМ АНАЛИТИЧЕСКОГО ИССЛЕДОВАНИЯ

1. Положительная проба мочи по данным иммунного анализа указывает на потребление марихуаны (или продуктов ее переработки) в течение периода от 1 ч до нескольких недель от момента отбора пробы.

Возможны следующие варианты.

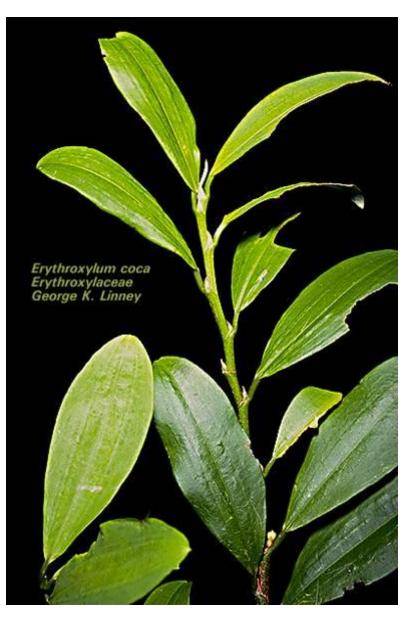
- •общая концентрация каннабиноидов в моче менее 50 нг/мл употребление дозы ранее чем период 36 ч, или долговременная экскреция у хрон.потребителей.
- •при последовательных еженедельных анализах первая проба была положительной, а вторая и третья отрицательные случайное или разовое потребление.
- •пробы положительны в течение 3 или более недель, но концентрация постепенно уменьшается и в течение длительного времени (не менее двух недель) пробы остаются отрицательными, прекращение использования марихуаны хроническим потребителем.
- •пробы положительны в течение неск. недель без тенденции к уменьшению концентрации хроническое потреблении марихуаны.
- 2. Индикатор недавнего использования марихуаны в моче метаболит 8, 11-ди-ОН-дельта-9-ТГК, появляется в первые несколько часов после приема.
- 3. Разовая единственная положительная проба мочи не означает, что субъект, принимавший марихуану, находился в момент отбора пробы под ее воздействием. Положительная проба мочи означает лишь то, что субъект принимал марихуану в недавнем прошлом (часы, дни или недели)

КРАТКАЯ ИСТОРИЯ КОКИ

- Южноамериканские индейцы используют кокаиновый куст по крайней мере 5000 лет для вхождения в транс при религиозных обрядах, для улучшения самочувствия, снятия усталости и уменьшения чувства голода.
- Кокаин выделен из листьев коки в 1859 г немецким химиком Фридрихом Гедке, назвав выделенный алкалоид эритроксилином
- Альбертом Ниеманом усовершенствовал процедуру выделения алкалоида и назвал его кокаином, его структура расшифрована в 1898 г., а синтез осуществлен в 1902 г.
- В 18 19 веках кокаин широко распространялся как свободно доступный и «безвредный» стимулятор. Он использовался для местного обезболивания, входил в состав большого числа лекарств, прохладительных напитков, тоников, вин и лакомств.
- Наиболее известным из них являлись смеси вин с кокаином, например, «Vin Mariani.», потребление которых считалось привилегией высшего общества и интеллектуальной элиты общества А. Франц, Г. Ибсен, Жуль Верн, А. Дюма, Р. Стивенсон, К. Доль, Масне, Гуно, королева Виктория, короли Греции и Испании, персидские шахи и президенты США.

КРАТКАЯ ИСТОРИЯ КОКИ

ниже представлены образцы рекламных буклетов 18 – 19 веков для различных напитков, вин и аперитивов, содержащих кокаин.



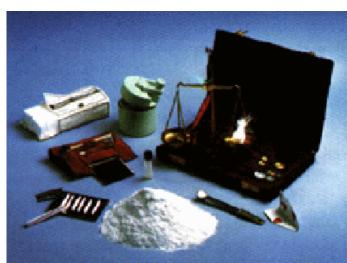
КРАТКАЯ ИСТОРИЯ КОКИ

- •В 1886 г. американский аптекарь и большой любитель коки Джон Помбертон (John Pemberton), пытаясь спасти от запрещения свободного распространения указанные выше напитки, заменил в них алкоголь на сахарный сироп. Полученный напиток назвали «Кока-кола: напиток для трезвенников».
- •По настоянию правительства США начиная с 1904 года «Кока кола» выпускается по технологии, не допускающей присутствия в нем кокаина.
- •В 1914 в США и ряде других стран принимаются первые законодательные меры для ограничения употребления кокаина.
- •Международная конвенция 1961 г. установила нынешний статус всех наркотических средств, получаемых из кокаинового куста.

Растительное сырье

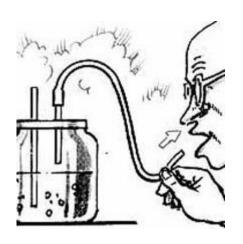
- Родина кокаинового куста Перу, Боливия и восточные склоны Анд.
- В настоящее время дикие растения практически не встречаются.
- Издавна культивировался, сначала индейцами, затем, в конце XX в. плантации были заложены на о-ве Ява, о-ве Шри-Ланка и других районах Юго-Восточной Азии, позднее в Африке.
- Известно около 200 видов растений рода Erythroxylon. По крайней мере 17 из них накапливают кокаин. Но только два: Erythroxylon соса и Erythroxylon почодгатение, обычно производят достаточное с экономической точки зрения количество кокаина, чтобы оправдать расходы на их культивирование.

Химический состав


Листья кокаинового куста содержат сумму алкалоидов (0,5 - 1,5%), главным из которых является кокаин. На его долю приходится около 30% от всей суммы алкалоидов. Остальные алкалоиды: производные экгонина - метилэкгонин, цис- и транс-циннамоилкокаины, бензоилэкгонин, тропакокаин, труксиллиновые кислоты и др. Все производные экгонина используются ДЛЯ промышленного полусинтеза кокаина. Кроме того, в листьях содержатся алкалоиды гигрин, кускгигрин, эфирные масла, жирные кислоты.

Основные регионы нелегального производства кокаина

Наркотические средства коки


•Листья коки. Потребление листьев коки первоначально было прерогативой элиты древних индейцев. Сегодня, этому потворствует большинство аборигенов Южной Америки. Листья коки в настоящее время широко используются при производстве чая «Соса mate». Питье этого чая успокаивает жкт, Этот чай более мягкий стимулятор, чем кофе.

•Паста кокаина — Сульфат кокаина, basuco, basa, pitillo, тесто. Это — низкосортный наркотик, который применяется в городских трущобах Южной Америки. Паста представляет собой промежуточный продукт переработки листа коки.

•Кокаина гидрохлорид - белый кристаллический порошок (chow), обычно без запаха, или большие, иногда бесцветные, кристаллы (rock). Используется для внутривенного введения или получения кокаина основания. Содержание собственно кокаина обычно 80-90%. Для уличной торговли разбавляется до 12 — 50 % добавлением пирацетама, кофеина, лидокаина, прокаина, бензокаина, сахарами и крахмалом.

Наркотические средства коки и способы их маскировки

- **Кокаина основание / крэк** (freebase/crack) получается из кокаина гидрохлорида.
- «Коричневый» кокаин для маскировки наркотика под растворимый кофе или чай соли кокаина смешиваются с хлоридами кобальта или железа до получения состава, содержащего примерно 40% кокаина.
- «Черный» кокаин получают смешиванием солей кокаина с полимерным материалом, из которого затем изготовляют статуэтки, дипломаты, подставки и прочие предметы.
- «Спидбол» смесь кокаина и героина в равных пропорциях.

Фармакокинетика кокаина

- Клиническая доза кокаина **1,5** мг/кг
- Смертельная доза (для человека ранее не употреблявшего) **200** мг
- Разовая «уличная» доза **15 60** мг
- Для интранозального введения
 («дорожка» длиной 3 5 см) от 10 20
 мг до 50 100 мг
- токсическая доза **орально 500 мг**
- Летальная доза 1,2 г, при индивидуальных отклонениях может снижаться до 20 мг и менее или повышаться до 8 – 10 г.

Метаболизм и фармакокинетика кокаина

$$\begin{array}{c|c} & & & \\ \hline & N-CH_3 & & & \\ \hline & O-C & & \\ \hline & O \end{array}$$

кокаин

Время полувыведения

- кокаин 38 67 мин
- бензоилэкгонин 4 6 часов
- метилэкгонин 2,5 7,6 ч.

Биодоступность при различных способах введения

оральный 20 — 40% интраназальный 20 — 40% курение 6 — 32% внутривенный 100%

Разовая доза кокаина выводится с мочой на 90 – 95% за 2 – 3 дня в основном в виде метаболитов:

кокаин (1-9%), бензоилэкгонин (35-60%), метилэкгонин (32-49%), экгонин (1-8%), норкокаин и гидроксилированные метаболиты (до 10%)

б) деметилирование

COOCH₃

$$O - C$$

$$O -$$

кокаин

бензоилэкгонин (главный метаболит)

$$\begin{array}{c|c} & & & & \\ & &$$

норкокаин

(активный метаболит)

кокаин

CH,OH

в) гидроксилирование

$$\begin{array}{c|c} & & & & & & & \\ \hline & N-CH_3 & & & & & \\ \hline & O-C & & & \\ \hline & O-CH_3 & & & \\ \hline & O-CH_3 & & \\ \hline & O-CH_3 & & \\ \hline \end{array}$$

кокаин

гидроксипроизводное норкокаина

II фаза – образование глюкуронидов

глюкуронид экгонина

глюкуронид гидроксипроизводного норкокаина При *изолировании* из биологических объектов кокаин экстрагируются хлороформом из водных вытяжек из объекта при pH=8-10.

При проведении общего *TCX-скрининга* алкалоиды - производные тропана и экгонина обнаруживаются на хроматографических пластинках в виде оранжевых пятен при обработке их реактивом Драгендорфа

Рекомендованные системы растворителей

1. Хлороформ: Диоксан: Этилацетат: Аммиак 25: 60: 10: 5

2. Метанол: конц. Аммиак 100: 1,5

3. Циклогексан: Толуол: Диэтиламин 75: 15: 10

Пластины

СОРБТОН, СОРБФИЛ, Кизельгель G 60

Химические методы.

Реакция Скотта на кокаин. При добавлении к остатку после испарения извлечения из объекта или к образцу наркотического средства 5 капель 2% раствора тиоцианата кобальта, смешанного с глицерином (1:1) - появляется синее окрашивание, которое исчезает при добавлении 1-2 капель концентрированной хлороводородной кислоты. Если к окрашенному раствору добавить несколько капель хлороформа, его слой окрашивается при встряхивании в синий цвет.

Реакция образования бензойно-этилового эфира. К нескольким крупинкам исследуемого вещества или к сухому остатку экстракта из объекта прибавляют 2 мл концентрированной серной кислоты и 2 мл этилового спирта. Смесь нагревают на водяной бане 5 мин. Появляется характерный запах бензойно-этилового эфира. Этот запах ощущается более четко, если полученную жидкость разбавить 5-10 кратным объемом холодной воды очищенной.

$$V - CH_3$$
 $V - CH_3$ $V - CH_3$

Реакция с перманганатом калия. К сухому остатку добавляют каплю 10% хлороводородной кислоты и выпаривают досуха, а затем наносят на остаток каплю 1% раствора перманганата калия Через 10-20 мин наблюдают появление красно-фиолетовых кристаллов в форме прямоугольных пластинок и сростков из них.

Предел обнаружения - 4 мкг кокаина в исследуемой пробе.

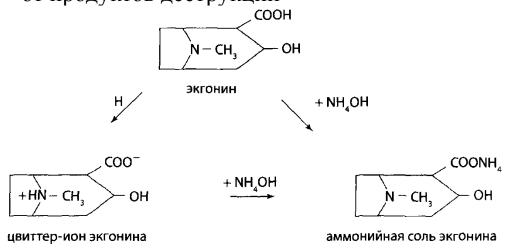
Реакция с платинохлороводородной кислотой. К сухому остатку, полученному после выпаривания хлороформного экстракта, прибавляют каплю 0,1 М раствора хлороводородной кислоты и каплю 10% раствора платинохлороводородной кислоты Кокаин образует светло-желтые кристаллы, имеющие форму перистых дендритов Предел обнаружения - 3,3 мкг кокаина в исследуемой пробе

ИК-спектроскопия. К остатку после испарения хлороформного экстракта из объекта или к нескольким мг исследуемого образца наркотического средства добавляют 1 каплю 25% раствора аммиака и 1 мл диэтилового эфира (или пентана), высушивают, остаток прессуют и используют для регистрации ИК-спектра. В ИК-спектре обнаруживают характерные волновые числа 1275, 1700, 1106, 1728, 710, 1040, 1280 Полученные значения волновых чисел должны соответствовать стандартным образцам

Высокоэффективная жидкостная хроматография.

Обнаружение проводят по времени удерживания (объему удерживания) и по спектральным отношениям при нескольких длинах волн. Полученные результаты сравнивают с данными по атласам ВЭЖХ-спектров и при совпадении параметров удерживания делают вывод об обнаружении определенного соединения

Газожидкостная хроматография


УФ-спектрофотометрия. Проводится после очистки извлечений ТСХ, элюируют с пластинки с помощью 0,1 М раствора серной кислоты. В УФ-спектре в области 200-320 нм обнаруживают следующие максимумы светопоглощения - 233, 275 нм.

Хроматомасс-спектральный анализ. Обнаружение проводится по времени удерживания и характеристическим ионам для каждого соединения.

Анализ трупного материала на кокаин

Кокаин можно обнаружить в трупном материале только при приеме значительных количеств вещества и в только вскоре после смерти. Кокаин в организме легко гидролизуется до бензоилэкгонина, который под влиянием ферментов печени переходит в экгонин и бензойную кислоту.

При изолировании объекты подкисляют щавелевой или серной кислотами до pH=2-3. В этих условиях экгонин существует в форме цвиттер-иона. Последующее подщелачивание на второй фазе изолирования раствором аммиака перед экстракцией хлороформом до pH=8-10 приводит к образованию аммонийной соли по карбоксильной группе. Соли экгонина нерастворимы в хлороформе, поэтому в процессе экстракции они не извлекаются ни при pH=2-3, ни при pH=8-10. Это позволяет отделить алкалоид от продуктов деструкции

Для *изолирования* экгонина перед проведением экстракции его переводят в метиловый эфир, экстрагируют его хлороформом и проводят исследование.

Обнаружение экгонина.

Реакция с фосфорно-молибденовой кислотой. При добавлении к остатку, полученному после испарения хлороформного экстракта, раствора фосфорно-молибденовой кислоты образуются сферические сростки из желто-зеленых кристаллов

Количественное определение

Метод ВЭЖХ Используют метод добавок, методы внутреннего и внешнего стандарта. Расчет концентрации кокаина проводят по формулам.

Метод ГЖХ. Расчет проводят по высоте или площади полученных пиков на хроматограмме исследуемого вещества и внутреннего стандарта с использованием калибровочных графиков.

Метод ГХ/МС. В качестве внутренних стандартов используют аналоги, меченные изотопами, и расчеты ведут по отношению m/z анализируемого вещества к m/z стандарта по калибровочным графикам.

Интерпретация результатов

- После разовой дозы кокаина последний может обнаруживаться в моче в неизменном виде от 8 до 24 часов, а бензоилэкгонин и метилэкгонин – до 48 часов
- При хроническом потреблении сроки детектирования увеличиваются до 5 дней
- Обнаружение в моче этилового эфира бензоилэкгонина указывает на одновременное потребление кокаина и этанола
- Обнаружение метилового эфира ангидроэкгонина указывает на курение крэка и основания кокаина

Исследование волос и ногтей на кокаин

внешний осмотр

На данном зтапе определяют:

для волос: вес; цвет; длину; направление роста

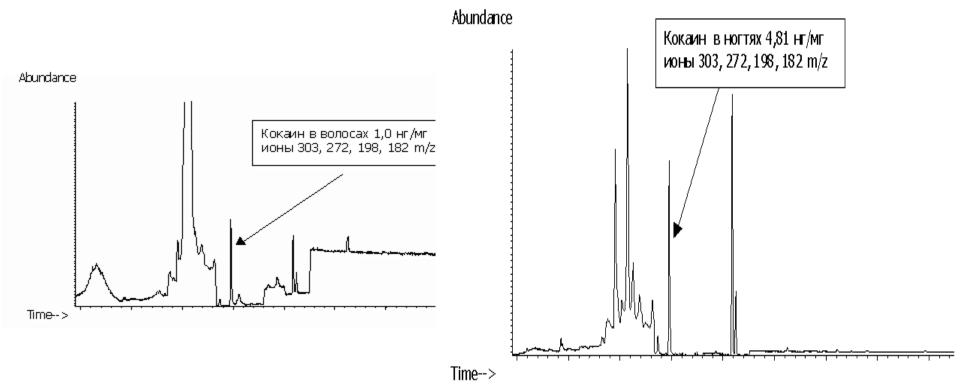
для ногтей: вес и их общее количество

ПРЕДВАРИТЕ ЛЬНОЕ ИССЛЕ ДОВАНИЕ поверхности объектов

Проводится с целью обнаружения исследуемых веществ, попавших на эту поверхность из внешней среды или выделившихся из организма с секретами желез

ОЧИСТКА ПОВЕРХНОСТИ

проводится до получения **полной уверенности** в отсутствии на ней исследуемых веществ


ВЫДЕЛЕНИЕ ВЕЩЕСТВ из внутренних слоев волос и ногтей

осуществляется при помощи разрушения структуры объета или без такового

ОБНАРУЖЕНИЕ ВЕЩЕСТВ

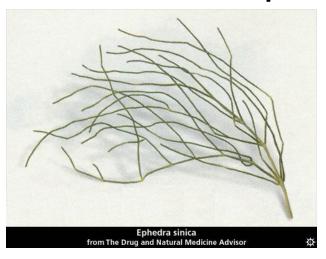
ИНТЕРПРЕТАЦИЯ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Пример обнаружения кокаина в волосах и ногтях

Интерпретация результатов исследования волос

- Минимальная доза кокаина, определяемая в волосах
 20 35 мг
- Длительность определения в волосах разовой дозы **2 6 мес**
- Содержание кокаина в волосах не зависит от способа введения
- Содержание кокаина в волосах от **0,1 до 16 нг/мг** (если полученная концентрация выше 20 нг/мг, то результаты следует рассматривать как ошибочные)
- Содержание бензоилэкгонина в волосах менее 1 нг/мг
- Содержание метилэкгонина на уровне предела обнаружения метода или ниже.
- Максимально содержание кокаина в волосах приходится **на 1-2 мес** после приема разовой дозы.

Химико-токсикологический анализ амфетаминов


Классификация фенилалкиламинов по источникам получения и происхождению

 Природные фенилалкиламины

> Полусинтетические и синтетические фенилалкиламины

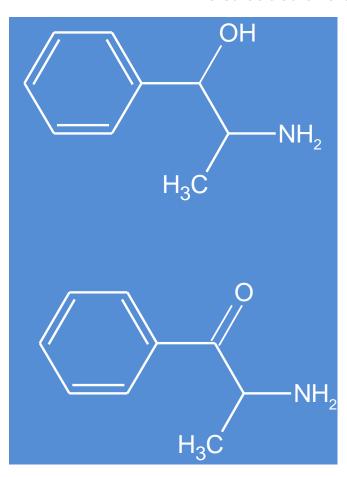
Фенилалкиламины природного происхождения



• Кат съедобный

• Трава эфедры

• Пейот


Кат съедобный

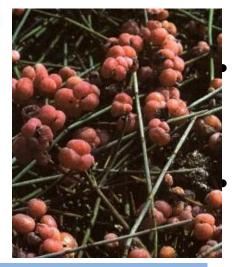
Молодые побеги и листья Catha вечнозеленого кустарника edulis Forsk. sp. Celastracaceae (кат съедобный), произрастающего на юге Аравийского полуострова и Восточной Африке интенсивно используются населением ЭТИХ регионов В качестве возбуждающего, стимулирующего и эйфоризирующего средства, называемого khat, chat, gat, Kus-es-Salahin, miraa, tohai и tschat.

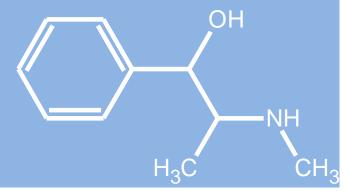
Высушенные листья этого растения известны как Абиссинский или Арабский чай.

Р Первые упоминания о кате относятся к 15 веку н.э.

Кат съедобный химический состав

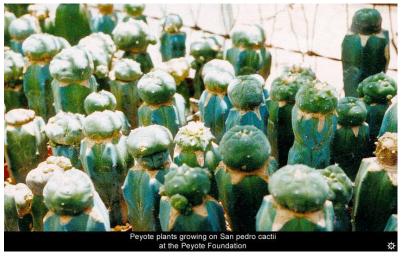
Основным действующим началом ката съедобного является катин (сверху) и катинон (снизу).

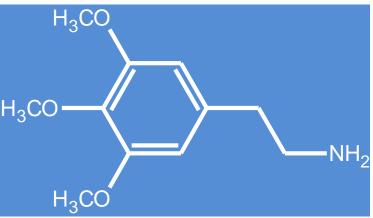

Кроме них, кат съедобный содержит жирные кислоты, эфирные масла, алкалоиды.


Содержание действующих компонентов в кате составляет от 0,5 до 2%.

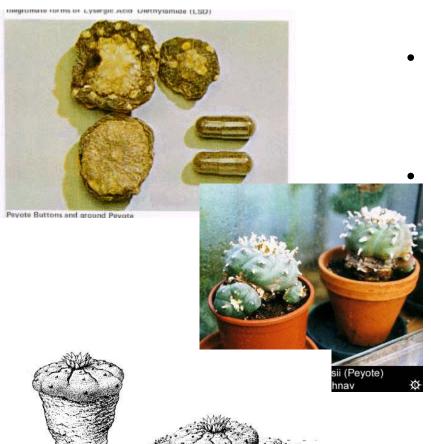
После срезания, под воздействием ферментов, в течение нескольких часов катин и катинон быстро разрушаются.

Трава эфедры


- трава эфедры Ephedrae heiba
 - В Китае это дикорастущее растение используют уже более 5000 лет от слабого кровообращения, лихорадки, кашля и для повышения работоспособности. Несколько позднее, такое же применение получили и другие виды Ephedra уже из Индии и Испании.


В настоящее время Ephedrae herba - сборное обозначение для всех видов Ephedra, которые содержат действующее вещество эфедрин.

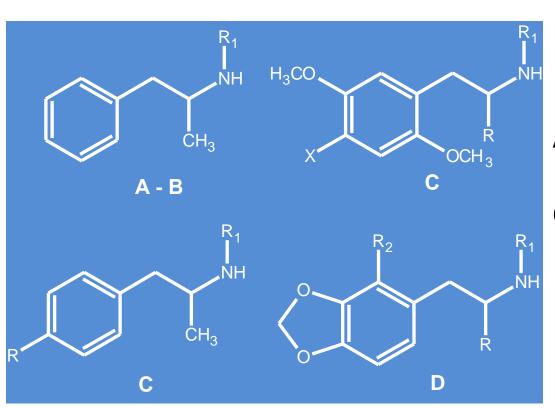
Эфедра растет небольшим кустиком, внешне напоминающим хвощ, и достигает в высоту 30-40 (50) см. Прутьевидные членистые ветки расположены в мутовках, с кожистыми влагалищами возле узлов и лишены зеленых листьев. Цветки этого двудомного растения неприметны.


Пейот

- Южноамериканские индейцы использовали мескалинсодержащие кактусы при проведении религиозных обрядов за несколько веков до открытия Америки Колумбом. Для этого использовали настои из нарезанных колечками и подсушенных кактусов (пейот).
- Галлюциногенный алкалоид мескалин впервые выделен в 1896 г. из кактуса пейот (Lophophora williamsii), произраставшего Северной Мексике.
- В незаконном обороте встречаются желатиновые капсулы, содержащие толченые сухие кактусы, содержащие до 8% мескалина..
- Галлюциногенные дозы мескалина оцениваются как 200-500 мг в виде гидрохлорида или сульфата.
- Эффекты от разовой дозы наблюдаются в течение 12 часов

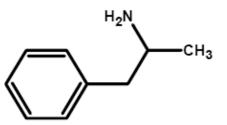
Пейот

Lophophora williamsii


Употребление разовой дозы мескалина вызывает галлюцинации, приводит к повышению сексуальной активности и обострению чувствительности.

Токсическими эффектами являются агрессивность, тревога и чувство беспокойства, неадекватное ощущение пространства и цвета, психотические реакции.

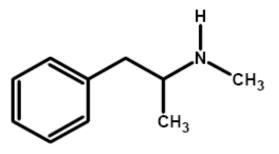
Мескалин получают экстракцией из различных частей кактуса Lophophora Williamsii Lemaire или синтезируют в лаборатории. Наряду с мескалином, другие алкалоиды Lophophora Williamsii, такие как ангалонидин, ангалонин и пеллотин, также вызывают галлюциногенные эффекты.


Наибольшее содержание мескалина в цветках, которые имеют окраску коричневого цвета и размер 2,5-5 см в диаметре. Они редко встречаются в незаконном обороте, т.к. имеют очень горький вкус. Поэтому цветки обычно растирают в темно-коричневый порошок и продают в желатиновых капсулах.

Синтетические фенилалкиламины

- А. Амфетамин
- В. Метамфетамин
- С. Метоксизамещенные по бензольному кольцу
- D. Метилендиокси производные

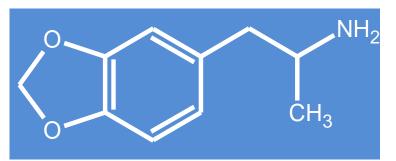
Амфетамин.



отнесен к Списку I Перечня наркотических средств и психотропных веществ

- Впервые синтезирован в 1887 г, как аналог эфедрина, и получил широкое распространение в медицине в качестве бронхорасширяющего средства.
- В 20-30 г 20-века стал использоваться как стимулятор ЦНС, для подавления аппетита, для лечения гипокинезии у детей и нарколепсии.
- Основными и тяжелейшими последствиями приема являются: увеличение вероятности инсульта, гипертония, аритмии, параноидальные психозы.
- Для снижения аппетита и повышения активности использовались разовые дневные пероральные дозы 5 – 15 мг.
- Оральная или внутривенная дневная доза для наркоманов может доходить до 2000 мг.
- Входит в состав антидота для фосфорорганических веществ из армейской индивидуальной аптечки «А-1» афин.

Метамфетамин



- Впервые синтезирован в 1919 г.
- Незаконно синтезируемый из фенилацетона и N-метилформамида представляет собой рацемат, из эфедрина с применением красного фосфора и йодистоводородной кислоты d-изомер.
- Как гидрохлорид в разовых пероральных дозах 2,5-15 мг за рубежом применяется для лечения ожирения. Там же доступен в виде таблеток по 2,5-5 мг или таблеток пролонгированного действия по 5-15 мг.
- С немедицинскими целями используется путем внутривенного или внутримышечного введения, перорально, а также вдыханием паров, после смешивания с марихуаной, табаком или петрушкой.
- Наиболее опасной формой является «лед» кристаллическая форма метамфетамина гидрохлорида.
- Часто используется в смесях с кокаином, героином или другими наркотиками.

отнесен к Списку I Перечня наркотических средств и психотропных веществ

Синтетические фенилалкиламины метилендиоксиамфетамин

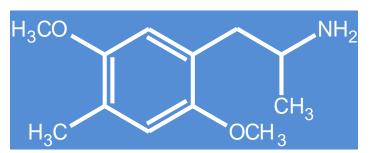


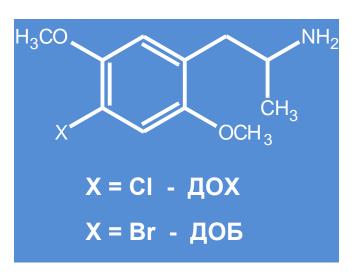
отнесен к Списку I Перечня наркотических средств и психотропных веществ

- МДА впервые был синтезирован в 1910 году
- Широкое распространение в незаконном обороте наркотиков МДА получил в Америке в конце 60-х начале 70-х гг. и был известен как Mellow Drug (таблетки Меллоу) или Love Drug (таблетки любви).
- При принятии малых доз МДА (менее 80 мг) достигается стимулирующий эффект.
- В средних дозах (80-150 мг) МДА вызывает психотропные эффекты, проявляющиеся в чувстве расслабленности, прояснении сознания, улучшении настроения, возникновении стремления к общению с людьми, облегчении отношения к себе и прошлому.
 - Большие дозы (более 150 мг) приводят к галюциногенным эффектам с искажением визуальных, акустических и тактильных ощущений.
 - Доза выше 500 мг является смертельной.
 - Практически все препараты, в состав которых входит МДА, встречаются в виде таблеток, содержащих 200-230 мг вещества, и употребляются перорально.

Синтетические фенилалкиламины

метилендиоксиметамфетамин и метилендиоксиэтиламфетамин





- МДМА впервые был синтезирован в 1914 году.
- Употребление МДМА расширяет границы и повышает способность восприятия. Потребители МДМА описывают его действие как "отделение души от тела".
- Средняя разовая доза при приеме перорально составляет около 100 мг. Действие начинается через 30-60 мин и продолжается 4-6 часов.
- МДМА вызывает высокую психическую зависимость.
- В незаконном обороте этот наркотик появился в конце 70-х гг. в виде таблеток, капсул и порошков, содержащих 50-100 мг действующего вещества.
- N-этил-МДА (МДЕА) впервые синтезировали в 1980 г. Действие МДЕА начинается через полчаса после приема, длиться 3-5 часов, а затем медленно ослабевает.
- Действующая доза составляет около 120 мг.
 Смертельная доза более 500 мг.
- МДЕА вызывает состояние эйфории, повышение коммуникабельности, в определенных условиях происходит резкая смена настроения от эйфории к депрессии. Вызывает психическую зависимость средней силы.

к Списку I Перечня наркотических средств и психотропных веществ

Замещенные по бензолу амфетамины

отнесены к Списку I Перечня наркотических средств и психотропных веществ

- ДОМ/STP впервые появился в незаконном обороте наркотиков в 1967 г. в США в виде таблеток под названиями, характеризующими его действие: STP, Serenity (безмятежность), Tranquility (спокойствие), Peace (мир).
- ДОМ/STP действует как галлюциноген и обладает активностью в 80-100 раз более высокой высокой, чем мескалин, но в 50-60 раз более низкой, чем ЛСД.
- Высокой активностью обладает ДОХ. Этот наркотик появился впервые в незаконном обороте в США в 1972 г., а в Канаде, Австралии и Европе в конце 70-х, начале 80-х гг.
- Препараты, содержащие ДОХ, встречаются в виде таблеток, порошков и пропитки на бумажных носителях. Обладает активностью близкой к ДОБу. Описываемые ощущения сравнивают с состоянием комфорта в теле, мыслях, появлении галлюцинаций, связанных с цветными картинами и т.д.
- Для наиболее активных амфетаминов (ДОБ, ДОХ и ДОМ) распространены средства в виде пропитанных веществом бумажек, аналогичных бумажкам с ЛСД. Остальные наркотики этой группы встречаются в виде порошков, капсул, но прежде всего, в виде таблеток.

Внешний вид таблеток «экстази»

- Кроме самих амфетаминов или их смеси, в состав таблеток могут входить такие вещества как героин, фентермин и флунитразепам.
- Часто в таблетках встречаются кофеин, аспирин, парацетамол, альфа-метилбензиламин, эфедрин, хинин, изосафрол, лидокаин, тестостерон, хлорамфеникол.
 - В качестве наполнителей для таблеток и порошков, как правило, используют крахмал, лактозу, глюкозу, фруктозу, карбонат кальция, маннит, сорбит и др, а в качестве связующего при таблетировании поливиниловый спирт.

144 Ecstasy (MDMA) Tablets photographer unknown

Основные типы фармакологического действия

- Стимулирующее ЦНС
- Галлюциногенное
- Бронхорасширяющее
- Подавление аппетита

Наркотическое опьянение

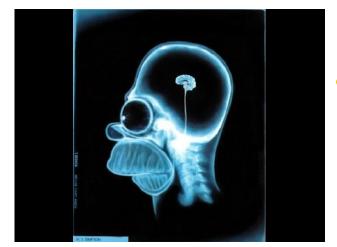
• Соматические признаки

резкое повышение артериального давления, учащение дыхания, сердечная аритмия, в частности преждевременное сокращение желудочков сердца

• Вегетативно-неврологические признаки

 тремор, озноб, головокружение, повышенная потливость, гиперрефлексия, резко расширенные зрачки, резкое снижение аппетита, бессонница

• Психическая сфера


ощущение притока энергии, веселость, оживление, многоречивость, раздражительность, беспокойство, тревога, агрессивное поведение, стремление все время находиться в движении, стереотипия (многочасовые, монотонные действия), при передозировке – галлюцинации, психотические расстройства и прочее.

Абстинентный синдром

- Амфетамины не дают выраженных проявлений физической зависимости, но при резком прекращении приема возникает резко очерченная абстиненция.
- При резком прекращении приема:
 - стойкая бессонница, депрессия с идеями самообвинения, иногда с суицидальными тенденциями.
- Лишение стимуляторов:
 - психоз, расстройства сна, помрачнение сознания, двигательное возбуждение, в некоторых случаях преобладают бредовые идеи преследования, галлюцинации.

Хроническая интоксикация

- Характеризуется выраженной психической, иногда очень интенсивной, зависимостью. Физическая зависимость в меньшей степени.
- Амфетамины часто маскируют хроническую усталость, недосыпание, снижение настроения, и их внезапная отмена вызывает проявление данных симптомов в более резкой форме.
- Хроническая интоксикация приводит к общему истощению, заметному падению веса тела, вегето-сосудистым нарушениям, нарушениям функций желудочно-кишечного тракта, бессонице, тахикардии, аритмии, гипертонии, раздражительности, возбудимости, патологическом развитием личности.
- Длительное применение стимуляторов ведет к снижению интеллекта, патологической обстоятельности мышление, зацикливании на несущественных деталях, сужению круга интересов.

Рекомендованные методы анализа

- Капельный химический анализ
- Тонкослойная хроматография
- Газовая хроматография масс спектрометрия

Капельный химический анализ

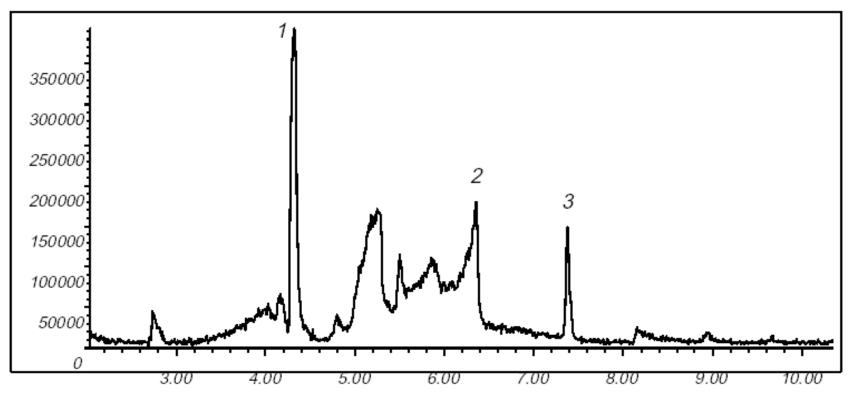
- При исследовании таблеток, часть таблетки массой 5-10 мг растирают в ступке, растертый порошок помещают в фарфоровую чашку и добавляют 2-3 капли реактива Марки, наблюдая при этом появившуюся окраску. Через 10- 15 минут фиксируют изменение окраски, если оно наблюдается.
- При исследовании вещества на бумажных носителях к 1-2 измельченным ножницами бумажкам, размером 1 см на 1 см, содержащим ДОБ, ДОХ или ДОМ добавляют 1 мл хлороформа, каплю 0,1 N водного раствора КОН (NaOH), доводят растворитель до кипения, после охлаждения отбирают растворитель, стараясь не захватить водный слой, и упаривают его досуха. К упаренному экстракту добавляют 2-3 капли реактива Марки.

Капельный химический анализ

№ п/п	Амфетамин	Окраска с реактивом Марки	
1	МДА	сине-черный → зеленовато-черный	
2	МДМА	сине-черный → зеленовато-черный	
3	МДЕА	сине-черный → зеленовато-черный	
4	ДОМ/STP	желтый	
5	ПМА	светло-серый	
6	ДМА	желто-зеленый → коричневый	
7	TMA	оранжевый	
8	ДОБ	зелёный → изумрудно-зелёный	
9	ДОХ	желто-зелёный	
10	МБДБ	сине-черный → зеленовато-черный	
11	БДБ	сине-черный → зеленовато-черный	
12	ДОЭТ	светло-коричневый → зеленый	
13	Мескалин	оранжевый	
14	Метамфетамин	коричневый	

- Часть таблетки массой 3-10 миллиграммов растирают в ступке, добавляют 0,5 мл хлороформа, добавляют каплю 0,1 N водного раствора КОН (NaOH) и нагревают до начала кипения.
- Если соответствующий амфетамин нанесен на бумажки (что встречается в случае активных амфетаминов, таких как ДОБ, ДОМ, ДОХ), к 1-2 измельченным ножницами бумажкам, размером 1 см на 1 см, добавляют 1 мл хлороформа, каплю 0,1 N водного раствора КОН (NaOH) и доводят растворитель до кипения, после охлаждения отбирают растворитель, стараясь не захватить водный слой и упаривают его до объема 4-5 капель. После охлаждения 4-5 мкл полученных экстрактов наносят на хроматографическую пластину.
- Для хроматографирования рекомендуются следующие системы растворителей:
 - хлороформ-ацетон-этанол-25%-ный раствор аммиака 20:20:3:1.
 - толуол-этанол-триэтиламин 9:1:1.

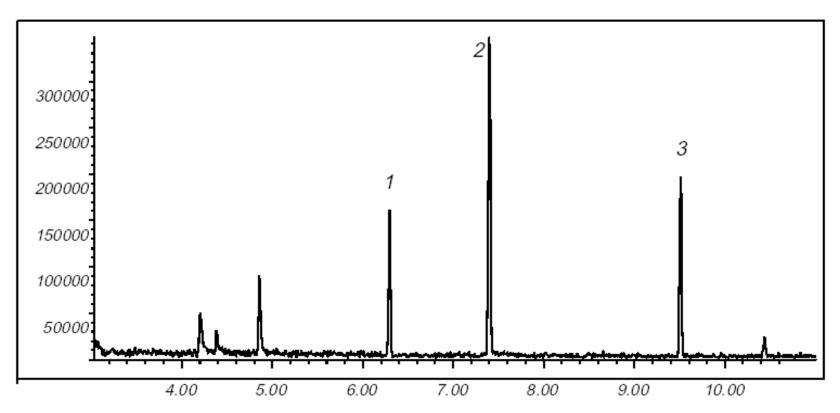
Значения Rf в системе хлороформ-ацетон-этанол-25%-ный водный раствор аммиака 20:20:3:1


No		Пластины		Пластины		Окраска хроматографических	
п/п	Вещество	Merck		Сорбфил		зон	
11/11		$R_{ m f}$	R_s	$R_{ m f}$	R_s	реактив Марки	нингидрин
1	МДА	0,44	1,76	0,66	1,73	сине-зеленый	желтый
						→зелено-	
						черный	
2	МДМА	0,12	0,48	0,23	0,60	сине-зеленый	фиолетово-
						→ зелено-	коричневый
						черный	
3	МДЕА	0,27	1,08	0,46	1,20	сине-зеленый	сливается с
						→ зелено-	фоном
						черный	
4	ДОМ/STP	0,30	1,20	0,46	1,21	желтый	желтый
5	ПМА	0,43		0,64		сливается с	желтый
						фоном	
6	ДМА	0,38	1,52	0,54	1,42	желтый	желтый
7	TMA	0,30	1,20	0,43	1,13	оранжевый	желтый
8	ДОВ	0,34	1,36	0,41	1,08	желтый→	оранжевый
						изумрудно-	
						зеленый	
9	ДОХ	0,44	1,76	0,60	1,58	желто-зеленый	желтый
10	МБДБ	0,26	1,04	0,41	1,08	сине-зеленый	фиолетово-
						→ зелено-	коричневый
						черный	
11	БДБ	0,60	2,40	0,74	1,95	сине-зеленый	желтый
						→ зелено-	
						черный	
12	ДОЭТ	0,36	1,44	0,52	1,37	желтый	желтый
13	Мескалин	0,36	1,44	0,50	1,32	оранжевый	фиолетовый
14	Метамфетамин	0,25	1,00	0,38	1,00	коричневый	фиолетовый

Значения Rf амфетаминов в системе толуол-этанол-триэтиламин (диэтиламин) 9:1:1

No	Вещество	Пластины		Пластины		Окраска хроматографических	
п/п		Merck		Сорбфил		30Н	
		Rf	Rs	Rf	Rs	Реактив Марки	
1	МДА	0,31	0,86	0,46	1,00	сине-зеленый → зелено-черный	
2	МДМА	0,36	1,00	0,46	1,00	сине-зеленый → зелено-черный	
3	МДЕА	0,56	1,56	0,64	1,40	сине-зеленый → зелено-черный	
4	ДОМ/STP	0,32	0,89	0,43	0,93	желтый	
5	ПМА	0,21	0,58	0,36	0,63	сливается с фоном	
6	ДМА	0,33	0,92	0,42	0,91	желтый	
7	TMA	0,19	0,53	0,30	0, 65	оранжевый	
8	ДОБ	0,30	0,83	0,40	0,87	желтый→изумрудно-зеленый	
9	ДОХ	0,31	0,86	0,43	0,93	желто-зеленый	
10	МБДБ	0,54	1,50	0,62	1,35	сине-зеленый → зелено-черный	
11	БДБ	0,48	1,30	0,59	1,28	сине-зеленый → зелено-черный	
12	ДОЭТ	0,36	1,0	0,40	0,87	желтый	
13	Мескалин	0,10	0,28	0,12	0,26	оранжевый	
14	Метамфетамин	0,36	1,00	0,46	1,00	коричневый	

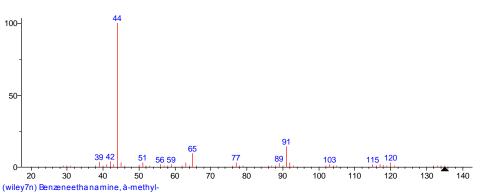
Газовая хроматография

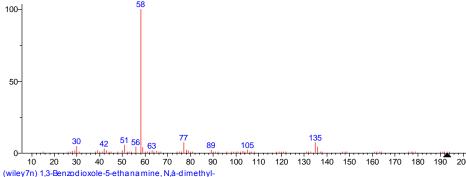

недериватизированные амфетамины

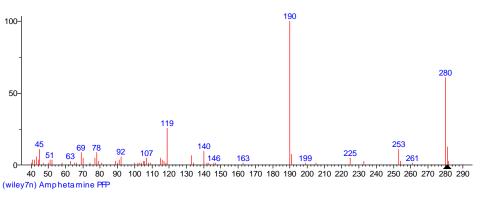
1. Amphetamine 2. Methamphetamine 3. Ephedrine DB-5ms 30 m x 0.25 mm I.D., 0.25 μ m Split 1:100 MS full scan

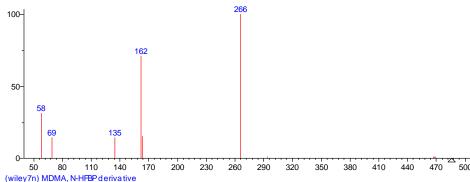
Газовая хроматография

ТФА-производные амфетаминов

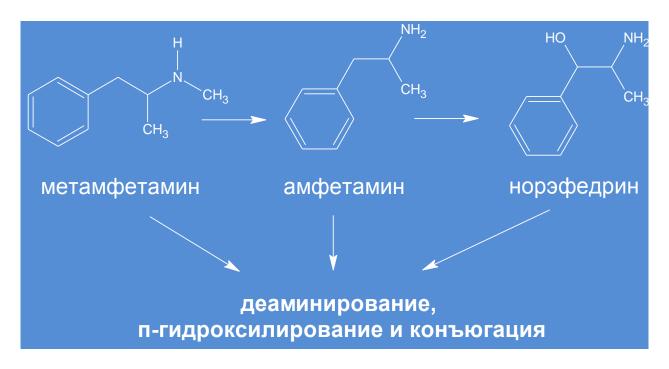

1. Amphetamine 2. Methamphetamine DB-5ms 30 m x 0.25 mm I.D., 0.25 μm Split 1:100 MS full scan


Ephedrine


Методика получения производных


- Сухой остаток после экстракции растворяют в 0,5 1,0 мл толуола.
- Добавляют 50 100 мкл дериватизирующего реактива.
- Закрывают и нагревают до 60°C в течение 30 мин.
- Охлаждают до комнатной температуры.
- Добавляют 1,0 мл 5% раствора бикарбоната натрия и тщательно перемешивают.
- Верхнюю фазу анализируют методом ГХ или ГХ-МС. При необходимости пробу разбавляют.

Масс спектры модифициорованных и нет амфетаминов



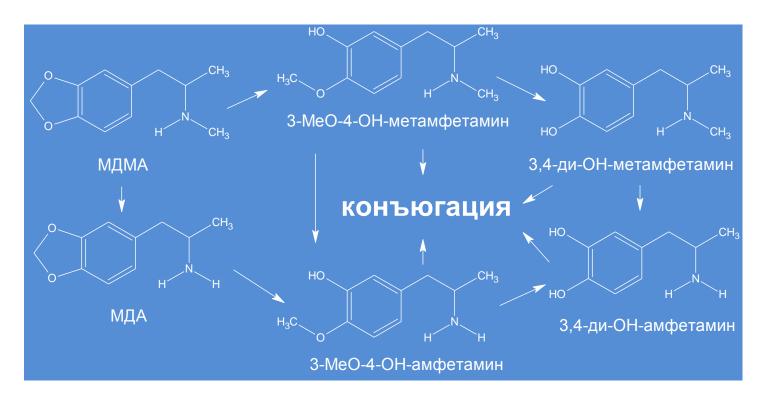

Анализ биообъектов

Схема метаболизма метамфетамина

- Основным метаболитом является АМФЕТАМИН.
- При нормальных условиях до 43% от принятой дозы в суточной моче определяется как неизмененный метамфетамин и 4-7% как амфетамин. В кислой моче до 76% и 7%, а щелочной 2% и менее 0,1%, соответственно.
- Около 15% от принятой дозы выводится в виде п-гидроксиметамфетамина, а также метаболитов амфетамина.
- Концентрации метамфетамина в суточной моче после разового приема 10 мг составляют 0,5-4,0 мг/л, а 30 мг до 7 мг/л. В моче наркоманов концентрации метамфетамина составляют 24-333 мг/л, а амфетамина 1-90мг/л.

Схема метаболизма МДМА

- Метаболизирует путем N-деметилирования в МДА.
- 65% от принятой дозы выводится с мочой за 3-е суток как неизмененное вещество и 7% как МДА.
- Концентрация МДМА в моче после приема 105 мг составила 17 мг/л, а МДА менее 3 мг/л.

Общая схема проведения исследований

- Экстракция (изолирование из биолог. Материала)
- (ненаправленный анализ) общими методами хлороформом в виде оснований из водных вытяжек при pH=8-10.
- ▶ направленный анализ производные фенилалкиламинов экстрагируют из водных вытяжек при рН=12 диэтиловым эфиром или хлороформом.
- для изолирования производных фенилалкиламинов из мочи использовать твердофазную экстракцию.
- Очистка
 - Реэкстракция
- Обнаружение

Химические реакции

С осадительными реактивами фенилалкиламины образуют аморфные или кристаллические осадки.

- с реактивом Марки.
- -с нингидрином

Микрокристаллоскопические реакции.

напоминающие по форме ветки и розетки

- с реактивом Драгендорфа в модификации А. С. Тищенко. Эфедрин образует игольчатые кристаллы и кристаллы в виде пластинок неправильной формы и сростки из них
- с платинохлороводородной кислотой и йодидом калия (А. С. Тищенко). К капле исследуемого раствора на предметном стекле добавляют каплю 0,5% раствора платинохлороводородной кислоты (H_2PtCl_6) и несколько кристаллов йодида калия. Через 15-20 мин. наблюдают образование красно-фиолетовых кристаллов в виде пластинок неправильной формы, собранных в сростки,

Остаток после испарения экстракта из водной вытяжки при pH=11-12 наносят на пластинки «Сорбфил». Параллельно наносят «стандарты»

Системы растворителей

- бензол этанол диэтиламин (9:1:1),
- хлороформ ацетон этанол 25% раствор аммиака (20:20:3:1)
- толуол этанол триэтиламин (9:1:1).

УФ-спектрофотометрия Эфедрин, амфетамин и метамфетамин в среде HCl имеют три полосы поглощения с максимумами при 251, 257 и 263 нм. В УФ-спектре раствора эфедрона обнаруживается одна полоса с максимумом при длине волны 251 нм.

Иммунохимические методы

TX-MC

ВЭЖХ

ИК- спектроскопия

Количественное определение

• Экстракционно-фотометрический метод

5 мл мочи подщелачивают 0,5% раствором гидроксида натрия до рH=12 и экстрагируют 3 раза 20 мл диэтиловош эфира. Эфирные экстракты объединяют и испаряют досуха. Остаток переносят в колориметрическую пробирку, добавляют до насыщения кристаллический сульфат натрия и смешивают с 1 мл аммиачного раствора сульфата меди и 3 мл 5% раствора сероуглерода в бензоле. Слой бензола окрашивается в желтый цвет. Оптическую плотность измеряют с помощью спектрофотометра или фотоэлектроколориметра при длине волны 440 нм в кювете с толщиной слоя 10 мм. Расчет количества эфедрина в моче проводят по калибровочному графику.

о Высокоэффективная жидкостная хроматография