Периферические органы иммунной системы

Иммунная система объединяет органы и ткани, обеспечивающие защиту организма от генетически чужеродных клеток или веществ, поступающих извне или образующихся в организме.

Органы иммунной системы выполняют функцию «охраны постоянства внутренней среды организма в течение всей жизни индивидуума».

Они вырабатывают иммунокомпетентные клетки, в первую очередь лимфоциты, а также плазмоциты, включают их в иммунный процесс, обеспечивают распознавание и уничтожение проникших в организм или образовавшихся в нем клеток и других чужеродных веществ, несущих на себе признаки генетически чужеродной информации.

Генетический контроль в организме осуществляют функционирующие совместно популяции Т- и В-лимфоцитов, которые при участии макрофагов обеспечивают иммунный ответ в организме.

Главная функция иммунной системы: сохранение постоянства гомеостаза организма путем распознавания и элиминации генетически чужеродных веществ антигенной природы эндогенно возникающих (клетки, измененные вирусами, ксенобиотиками, опухолевые клетки и др.) или экзогенно проникающих в организм.

Центральные органы

- 1. Красный костный мозг
- 2. Тимус

Периферические органы

- 1. Селезенка
- 2. Лимфатические узлы
- 3. Лимфоидные скопления в слизистых оболочках

Неинкапсулированная лимфоидная ткань слизистых оболочек

- 1. Лимфоидная ткань, ассоциированная с желудочно-кишечным трактом (GALT gut-associated lymphoid tissues). Это миндалины, аппендикс, пейеровы бляшки. Особой субпопуляцией являются внутриэпителиальные лимфоциты слизистой оболочки кишки (IEL intra-epitelial lymphocytes).
- 2. Лимфоидная ткань, ассоциированная с бронхами/бронхиолами (BALT bronchial-associated lymphoid tissue). Особой популяцией также являются внутриэпителиальные лимфоциты слизистой оболочки дыхательной системы.
- 3. Лимфоидная ткань других слизистых оболочек (MALT mucosal-associated lymphoid tissue).

- 4. Особые субпопуляции *лимфоцитов в печени*, которые в качестве лимфоидного барьера «обслуживают» кровь воротной вены, несущей все внешние, всосавшиеся в кишечнике вещества.
- 5. *Лимфоидная подсистема кожи*, включающая в себя субпопуляцию особых диссеминированных внутриэпителиальных лимфоцитов кожи (IEL) и регионарные лимфатические узлы и сосуды лимфодренажа.

Особенности центральных органов иммунной системы:

- Расположены в зонах организма, защищенных от внешних воздействий (костный мозг в костно-мозговых полостях, тимус в грудной полости);
- Костный мозг и тимус являются местом дифференцировки лимфоцитов;
- В центральных органах иммунной системы лимфоидная ткань находится в своеобразной среде микроокружения (в костном мозге миелоидная ткань, в тимусе эпителиальная).

Костный мозг (medulla ossium)

Костный мозг закладывается на 3-ем месяце внутриутробного развития. К моменту рождения ребенка костный мозг занимает все полости (ячейки) костей.

Красный костный мозг такого цвета из-за пронизывающих основное вещество сосудов. Локализован в мозговой полости, трабекулах костной ткани и губчатом веществе, под внешним слоем компактного вещества.

Во время внутриутробного развития эту работу выполняла эмбриональная печень.

С течением времени в ткани костного мозга начинают появляться жировые клетки. И постепенно часть его полностью замещается ими (желтый костный мозг).

Функции костного мозга:

- гемопозз всех типов клеток крови;
- антигеннезависимая дифференцировка и созревание В лимфоцитов.

Выделяют красный костный мозг, который у взрослого человека располагается в ячейках губчатого вещества плоских и коротких костей, эпифизов длинных костей, и желтый костный мозг заполняющий костномозговые полости диафизов длинных костей.

Общая масса костного мозга у взрослого человека - около 2.5-3 кг (4.5-4.7% от массы тела). Около половины составляет красный костный мозг, остальное - желтый.

Состоит красный костный мозг из миелоидной ткани, включающей ретикулярную ткань и гемопоэтические элементы. В нем содержатся стволовые кроветворные клетки - предшественники всех клеток крови и лимфы.

Желтый костный мозг представлен в основном жировой тканью, которая заместила ретикулярную. Кровообразующие элементы в желтом костном мозге отсутствуют.

Тимус (thymus)

Тимус расположен в верхней части грудной клетки, сразу за грудиной. Спереди к нему прилежит рукоятка и тело грудины до уровня IV реберного хряща. Сзади - верхняя часть перикарда, покрывающего начальные отделы аорты и лёгочного ствола, дуга аорты, левая плечеголовная вена; с боков — медиастинальная плевра.

У человека тимус состоит из 2-х долей, которые могут быть сращены или же просто плотно прилегать друг к другу.

У новорождённых его размеры составляют в среднем 5 см в длину, 4 см в ширину и 6 мм в толщину, масса - около 15 граммов. Рост органа продолжается до начала полового созревания (в это время его размеры максимальны - до 7,5-16 см в длину, а масса достигает 20-37 граммов).

С возрастом тимус подвергается атрофии и в старческом возрасте едва отличим от окружающей его жировой ткани средостения; в 75 лет средняя масса тимуса составляет всего 6 граммов. По мере инволюции он утрачивает белый цвет и за счёт увеличения в нём доли стромы и жировых клеток становится более жёлтым.

Тимус закладывается на 1-ом месяце внутриутробного развития.

У новорожденного ребенка он весит около 12 г. К возрасту полового созревания его масса постепенно увеличивается, достигая 35-40 г. С этого времени начинается обратное развитие органа - ткань постепенно замещается жировыми клетками.

В 25 лет вес тимуса уже около 25 г. К пожилому возрасту он снижается еще более значительно, достигая примерно 15 г. У стариков он весит и того меньше (около 6 г).

Тимус имеет тонкую соединительнотканную капсулу, от которой внутрь отходят перегородки, разделяющие дольки тимуса.

У тимуса различают корковое вещество, которое занимает периферию долек, и мозговое вещество, расположенное в центральной части.

В корковом веществе лимфоциты лежат более плотно, чем в мозговом. В корковом веществе тимуса начинают свое развитие Т- лимфоциты. Созреванию Т-лимфоцитов помогают и гормоны, которые продуцирует вилочковая железа (тимозин, тимопоэтин и др.). Из коркового вещества подготовленные лимфоциты переходят в мозговое вещество. Отсюда они направятся в кровь и с ее током попадут в другие органы иммунной системы. В мозговом веществе имеются тельца тимуса (тельца Гассаля), которые образованы концентрически лежащими, сильно уплощенными эпителиальными клетками.

Тимус закладывается в виде парного выпячивания эпителия III и IV жаберных карманов в конце первого — начале второго месяца внутриутробной жизни.

В эпителиальной закладке из стволовых клеток, поступающих сюда из красного костного мозга, образуются тимоциты. Зачатки тимуса растут в каудальном направлении, их длина и толщина увеличиваются, они сближаются друг с другом.

Проксимальная вытянутая тонкая часть зачатка постепенно исчезает, нижняя утолщенная часть образует долю тимуса.

На 5-м месяце жизни плода хорошо различимы корковое и мозговое вещество. **Артериальное кровоснабжение** осуществляется за счёт ветвей внутренних грудных артерий, дуги аорты и плечеголовного ствола.

Венозная кровь оттекает в плечеголовные и внутренние грудные вены.

Иннервация тимуса происходит за счёт ветви правого и левого блуждающих нервов, а также из шейно-грудного и верхнего грудного узлов симпатического ствола.

Лимфатические сосуды направляются в передние средостенные и трахеобронхиальные лимфатические узлы.

Миндалина (tonsilla)

Миндалины — представляют собой диффузные скопления лимфоидной ткани, содержащие небольших размеров более плотные клеточные массы - лимфоидные узелки.

Миндалины построены так, что их складчатая поверхность слизистого эпителия задерживает попадающие в начальные отделы дыхательных и пищеварительных путей мелкие частицы и микроорганизмы, связывает их и лизирует с помощью внутриклеточных ферментов.

Миндалины расположены в области корня языка, зева и носовой части глотки, т.е. на границе дыхательной и пищеварительной систем: язычная, глоточная, 2 небные и 2 трубные. Их совокупность называют лимфо-эпителиальное кольцо Вальдейера-Пирогова.

Миндалины это основной секреторного источник синтеза иммуноглобулина А в верхних дыхательных путях; здесь очень много плазматических клеток, продуцирующих именно ЭТОТ класс иммуноглобулинов. В миндалинах находится множество макрофагов, фагоцитирующих разнообразные патогены.

Язычная миндалина

Язычная миндалина (tonsilla lingualis) – непарная, находится под эпителием слизистой оболочки корня языка.

Поверхность корня языка над миндалиной бугристая. Эти бугорки соответствуют залегающим под эпителием лимфоидным узелкам. Между бугорками открываются отверстия небольших углублений — крипт, в которые впадают протоки слизистых желез.

Между лимфоидными узелками располагается диффузная лимфоидная ткань. Язычная миндалина закладывается у плода на 6—7-м месяце в виде единичных диффузных скоплений лимфоидной ткани в боковых отделах корня языка.

Лимфоидные узелки образуются на 8—9-м месяце жизни плода, их количество значительно увеличивается перед и особенно сразу после рождения.

В грудном возрасте в составе миндалины в среднем имеется 66 лимфоидных узелков, у подростков их 85. У детей и подростков почти все лимфоидные узелки имеют центр размножения.

У пожилых людей количество лимфоидной ткани в язычной миндалине значительно уменьшается, в ней разрастается соединительная ткань.

Артериальное кровоснабжение осуществляется за счёт ветвей язычной и лицевой артерий.

Венозная кровь оттекает в одноименные вены.

Иннервация язычной миндалины осуществляется за счёт волокон языкоглоточного и блуждающего нервов, а также симпатических волокон наружного сонного сплетения.

Лимфатические сосуды впадают в латеральные глубокие шейные (внутренние яремные) лимфатические узлы.

Глоточная миндалина

Глоточная миндалина (tonsilla pharyngea) – непарная, располагается в области свода глотки, между правым и левым глоточными карманами.

Слизистая оболочка глотки, покрывающая эту миндалину, образует поперечные и косые толстые складки, внутри которых находится лимфоидная ткань. Большинство лимфоидных узелков имеет центр размножения.

Миндалина закладывается на 3—4-м месяце внутриутробной жизни (в толще формирующейся слизистой оболочки носовой части глотки). У новорожденных длина глоточной миндалины составляет 5—6 мм, в конце первого года жизни — 6—10 мм. Лимфоидные узелки в глоточной миндалине образуются на первом году жизни. Ее размеры максимальные в возрасте 8—12 лет (длина 13—21 мм, ширина 10—15 мм).

Артериальное кровоснабжение осуществляется за счёт ветвей восходящих глоточных артерий.

Венозная кровь оттекает в вены глоточного сплетения.

Иннервация глоточной миндалины осуществляется ветвями лицевого, языкоглоточного, блуждающего нервов и симпатических периартериальных сплетений.

Лимфатические сосуды впадают в заглоточные лимфатические узлы.

Небная миндалина

Небная миндалина (tonsilla palatina) – парная, располагается в миндаликовой ямке между небно-язычной дужкой спереди и небно-глоточной дужкой сзади.

Медиальная свободная поверхность миндалины, обращенная в сторону зева, содержит около 20 ямочек, в которые открываются миндаликовые крипты.

Латеральной стороной миндалина прилежит к стенке глотки. В толще миндалины, вдоль ее крипт, располагаются многочисленные лимфоидные узелки, преимущественно с центрами размножения, и диффузная лимфоидная ткань.

Небные миндалины закладываются у плода в возрасте 12—14 недель в виде сгущения мезенхимы под покровным эпителием второго глоточного кармана. В скопление лимфоидной ткани на 5-м месяце плодного периода врастают эпителиальные тяжи (будущие крипты). К моменту рождения количество лимфоидной ткани увеличивается, появляются лимфоидные узелки; центры размножения в них формируются после рождения.

На первом году жизни длина небной миндалины составляет в среднем 15мм. Наибольших размеров миндалины достигают в возрасте 8—13 лет, после 25—30 лет происходит инволюция лимфоидной ткани — в ней уменьшаются размеры и количество лимфоидных узелков, разрастается соединительная ткань.

Артериальное кровоснабжение осуществляется за счёт ветвей восходящей глоточной и восходящей небной артерий, нисходящей небной (из верхнечелюстной артерии) и язычной артерий.

Венозная кровь оттекает в вены крыловидного сплетения.

Иннервация небной миндалины осуществляется волокнами большого небного нерва (от крылонебного узла), миндаликовой ветвью языкоглоточного нерва, симпатическими волокнами из внутреннего сонного сплетения.

Лимфатические сосуды направляются в латеральные глубокие шейные (внутренние яремные) лимфатические узлы.

Трубная миндалина

Трубная миндалина (tonsilla tubaria) – парная, находится в области глоточного отверстия слуховой трубы, в толще её слизистой оболочки.

Состоит из диффузной лимфоидной ткани и немногочисленных лимфоидных узелков.

Развитие трубной миндалины начинается на 7—8-м месяцах жизни плода. Вначале появляются отдельные скопления клеток лимфоидного ряда, из которых в дальнейшем формируется трубная миндалина.

Артериальное кровоснабжение осуществляется ветвями восходящей глоточной артерии.

Венозная кровь оттекает в вены глоточного сплетения.

Иннервируется трубная миндалина ветвями лицевого, языкоглоточного и блуждающего нервов, а также из периартериальных симпатических сплетений.

Пимфатические сосуды от области трубной миндалины впадают в заглоточные лимфатические узлы.

Пейеровы бляшки

Лимфоидная ткань, расположенная в стенке кишки, выполняет защитную и кроветворную функции. Представляют собой узелковые скопления лимфоидной ткани, располагающиеся в стенке подвздошной кишки. Залегают в толще слизистой оболочки и в подслизистой основе. Располагаются бляшки, как правило, на стороне, противоположной брыжеечному краю кишки.

Длина бляшек колеблется от 0,2 до 15 см, ширина составляет 0,2-1,5 см.

Построены лимфоидные бляшки из лимфоидных узелков, число которых в одной бляшке варьирует от 5-10 до 100-150 и более. Размеры лимфоидных узелков в бляшках колеблются от 0,5 до 2 мм.

Лимфоидная ткань, расположенная в стенке кишки, выполняет защитную и кроветворную функции.

Попадая в кишечник, антигены проникают в пейеровы бляшки через специализированные эпителиальные клетки и стимулируют антигенреактивные лимфоциты. Лимфоциты этих образований представлены как В-клетками, так и Т-клетками.

Кроме того, в слизистой находятся фагоцитирующие клетки, которые поглощают патогены, оказавшиеся на эпителиальной слизистой поверхности кишечного просвета.

Червеобразный отросток (appendix vermiformis)

Червеобразный отросток (аппендикс) располагается возле подвздошнослепокишечного перехода, отходит от нижней части слепой кишки, имеет в своих стенках многочисленные лимфоидные узелки и межузелковую лимфоидную ткань.

В детском возрасте (когда лимфоидная ткань наиболее развита) лимфоидные узелки в слизистой и подслизистой основе аппендикса располагаются в 2—3 ряда, их общее число составляет 600—800. Почти все лимфоидные узелки имеют центры размножения.

Длина червеобразного отростка и его положение сильно варьируют. Положение червеобразного отростка тесно связано с положением слепой кишки.

Как правило, он, как и слепая кишка, лежит в правой подвздошной ямке, но может лежать и выше при высоком положении слепой кишки, и ниже, в малом тазу, при низком ее положении.

При нормально расположенной слепой кишке различают следующие четыре положения червеобразного отростка:

• Нисходящее положение (наиболее частое, в 40 —45 % случаев). Если червеобразный отросток длинен, то конец его спускается в полость малого таза и при воспалении иногда срастается с мочевым пузырем и прямой кишкой.

- Латеральное положение (около 25 % случаев).
- Медиальное положение (17 —20 % случаев).
- Восходящее положение позади слепой кишки (около 13 % случаев). В этом случае червеобразный отросток располагается забрюшинно.

К атипичным локализациям отростка, связанными с онтогенетическими особенностями развития, конституциональными и половыми различиями, относятся:

- тазовое;
- ретроцекальное;
- левостороннее;
- подпеченочное.

Червеобразный отросток открывается в полость слепой кишки отверстием. Слизистая оболочка аппендикса сравнительно богата лимфоидной тканью, и некоторые авторы видят в этом его функциональное значение («кишечная миндалина», которая задерживает и уничтожает патогенные микроорганизмы, чем и объясняется частота аппендицита).

Стенка червеобразного отростка состоит из тех же слоев, что и стенка кишечника. По современным данным, лимфоидные образования аппендикса играют важную роль в лимфопоэзе и иммуногенезе, что послужило основанием считать его органом иммунной системы.

Слепая кишка и червеобразный отросток покрыты брюшиной со всех сторон. Брыжейка червеобразного отростка, mesoappendix, тянется обычно до самого его конца.

У слепой кишки приблизительно в 6 % случаев задняя поверхность оказывается не покрытой брюшиной, причем кишка в таких случаях отделена от задней брюшной стенки прослойкой соединительной ткани, а червеобразный отросток расположен внутрибрюшинно.

Артериальное кровоснабжение осуществляется из системы верхней брыжеечной артерии, а. mesenterica superior, от которой отходит подвздошноободочная артерия, а. ileocolica, которая, в свою очередь, дает начало основному питающему стволу — артерии червеобразного отростка, а. арреndicularis, проходящему в брыжейке отростка в виде одного, реже — двух сосудов.

Венозный оттож происходит в обратном порядке по одноименным венам: v. appendicularis - v. ileocolica - v. mesenterica superior - v. portae. Это очень важный момент, так как это - путь возникновения пилефлебитов и абсцессов печени при остром деструктивном аппендиците.

Иннервация осуществляется ветвями верхнего брыжеечного сплетения.

Лимфоотток происходит в лимфоузлы илеоцекального угла и лимфоузлы корня брыжейки тонкой кишки. Червеобразный отросток имеет общие коллекторы лимфооттока с органами малого таза.

Селезенка

Селезенка (lien – лат., splen – греч.) – выполняет функции иммунного контроля крови, находится на пути тока крови из аорты в систему воротной вены, разветвляющейся в печени.

Масса селезенки составляет 150-190 г, ее длина равна 10-14 см, ширина 6-10 см и толщина 3-4 см.

Функции селезенки:

- 1. Лимфопоэз главный источник образования циркулирующих лимфоцитов; действует как фильтр для бактерий, простейших и инородных частиц, а также продуцирует антитела (иммунная и кроветворная функции).
- 2. Разрушение старых и поврежденных эритроцитов (на гем и глобин) и тромбоцитов, остатки которых затем направляются в печень.
- 3. Селезенка через разрушение эритроцитов участвует в образовании желчи (фильтрационная функция, участие в обмене веществ, в том числе в обмене железа).
- 4. Депонирование крови, накопление тромбоцитов (1/3 всех тромбоцитов в организме).
- 5. На ранних стадиях развития плода селезёнка служит одним из органов кроветворения.
- 6. К 9-му месяцу внутриутробного развития образование как эритроцитов, так и лейкоцитов гранулоцитарного ряда берёт на себя костный мозг, а селезёнка, начиная с этого периода, производит лимфоциты и моноциты.
- 7. Но при некоторых болезнях крови в селезёнке вновь появляются очаги кроветворения, а у ряда млекопитающих она функционирует как кроветворный орган в течение всей жизни.

Топография селезенки:

Голотопия: верхний этаж брюшной полости.

Скелетотопия: IX-XI ребра по левой средней подмышечной линии.

Синтопия: диафрагма, желудок, левые надпочечник и почка, поперечная ободочная кишка, хвост поджелудочной железы

Проекция на переднюю брюшную стенку: левое подреберье

Отношение к брюшине: интраперитонеально.

Селезенка имеет форму уплощенной и удлиненной полусферы.

У селезенки различают диафрагмальную и висцеральную поверхности.

Выпуклая диафрагмальная поверхность (facies diaphragmatica) обращена латерально и вверх к диафрагме.

Передне-медиальная висцеральная поверхность (facies visceralis) неровная, на ней находятся ворота селезенки (hilum splenicum), через которые в орган входят артерия и нервы, выходит вена.

На висцеральной поверхности выделяют участки, к которым прилежат соседние органы.

Желудочная поверхность (facies gastrica) соприкасается с дном желудка, она находится впереди ворот селезенки.

Почечная поверхность (facies renalis), располагающаяся позади ворот органа, прилежит к верхнему концу левой почки и к левому надпочечнику.

Ободочно-кишечная поверхность (facies colica) имеется в месте соприкосновения селезенки с левым изгибом ободочной кишки, ниже ворот селезенки.

Непосредственно позади ворот имеется участок, к которому подходит *хвост поджелудочной железы*.

Селезенка покрыта брюшиной со всех сторон, то есть расположена интраперитонеально, за исключением ворот, где в нее вступают селезеночная артерия и нервы и выходят вены.

Из всех паренхиматозных органов селезенка обладает наибольшей подвижностью, так как прикрепляется связками брюшины также к подвижным органам (диафрагма, желудок).

Между висцеральной поверхностью селезенки с одной стороны, желудком и диафрагмой — с другой, натянуты листки брюшины, её связки — *желудочно*-

селезеночная связка (lig. gastrosplenicum) и диафрагмально-селезеночная связка (lig. phrenicosplenicum).

Lig. gastrosplenicum соединяет передний край ворот селезенки с дном и частично с большой кривизной желудка. Небольшой участок этой связки, граничащий с желудочно-ободочной связкой, выделяют как селезеночно-ободочную связку, lig. splenocolicum.

В желудочно-селезеночной связке проходят короткие артерии желудка и желудочно-сальниковая артерия, отходящие от a. splenica перед ее вступлением в селезенку.

Lig. phrenicosplenicum направляется к селезенке от поясничной части диафрагмы. Её продолжением является поджелудочно-селезеночная связка, lig. pancreaticosplenicum, представляющая из себя складку брюшины, идущую от хвоста поджелудочной железы к воротам селезенки. В этой связке располагаются селезеночные сосуды.

Задний листок диафрагмально-селезеночной связки подходит к заднему краю ворот селезенки, покрывает ее почечную поверхность и переходит к почке в виде *селезеночно-почечной связки*, lig. splenorenale.

Диафрагмально-ободочная связка, lig. phrenicocolicum, не являясь связкой селезенки, принимает участие в ее фиксации. Она соединяет нижнюю поверхность диафрагмы и левый изгиб поперечной ободочной кишки. В эту связку, как в гамак, упирается селезенка. Эта связка ограничивает снизу так называемый селезеночный мешок (он образован окружающими селезенку органами, главным образом диафрагмой и дном желудка).

От фиброзной оболочки (tunica fibrosa), находящейся под серозным покровом, внутрь органа отходят соединительнотканные трабекулы селезенки.

Между трабекулами находится паренхима — пульпа (мякоть) селезенки.

Выделяют красную пульпу (pulpa rubra), располагающуюся между венозными сосудами — синусами селезенки, и белую пульпу (pulpa alba).

Красная пульта состоит из петель ретикулярной ткани, заполненных эритроцитами, лейкоцитами, лимфоцитами и макрофагами.

Белая пульпа образована периартериальными лимфоидными муфтами, лимфоидными узелками и макрофагально-лимфоидными муфтами (эллипсоидами), состоящими из лимфоцитов и других клеток лимфоидной ткани, залегающих в петлях ретикулярной стромы.

Периартериальные лимфоидные муфты в виде нескольких слоев клеток лимфоидного ряда окружают пульпарные артерии, начиная от места выхода их из трабекул и вплоть до эллипсоидов. Лимфоидные узелки образуются как утолщения периартериальных лимфоидных муфт.

Артерия в лимфоидных узелках располагается эксцентрично. Пульпарная артерия делится на кровеносные сосуды — эллипсоидные артериолы, окруженные двумя-тремя концентрическими слоями макрофагов, лимфоцитов и других клеток (макрофагально-лимфоидные муфты, или эллипсоиды).

По выходе из макрофагально-лимфоидных муфт эллипсоидные артериолы разделяются на концевые капилляры, которые впадают в широкие венозные селезеночные синусы, располагающиеся в красной пульпе. Участки красной пульпы, расположенной между венозными синусами, называют селезеночными тяжами. Из селезеночных синусов формируются пульпарные, а затем трабекулярные вены.

Закладка селезенки происходит на 5—6-й неделе эмбриогенеза в виде небольшого скопления мезенхимы в толще дорсальной брыжейки.

В эту мезенхиму мигрируют клетки лимфоидного ряда. На 2—4-м месяце внутриутробного развития образуются венозные синусы и другие кровеносные сосуды, одновременно от капсулы внутрь селезенки врастают тяжи клеток, формируя будущие трабекулы.

В конце 4-го и на 5-м месяцах плодного периода в селезенке появляются скопления клеток лимфоидного ряда — будущие лимфоидные узелки и периартериальные лимфоидные муфты.

У новорожденных детей селезенка округлая, дольчатого строения, массой около 9,5 г. Доля белой пульпы в этом возрасте 5—10% от массы органа. К

концу первого года жизни масса селезенки составляет 24—28 г, в возрасте 16—17 лет достигает 165—170 г.

Артериальное кровоснабжение осуществляется за счёт селезеночной артерии.

Венозная кровь оттекает по селезеночной вене (приток воротной вены печени).

Иннервация селезенки осуществляется симпатическими волокнами из чревного сплетения и ветвями блуждающего нерва.

Лимфатические сосуды впадают в селезеночные лимфатические узлы.

Лимфатический узел

Мелкие (диаметром 0,5-1 см), сильно меняющиеся по величине периферические органы иммунной системы.

У взрослого человека имеется около 460 лимфоузлов, общая масса которых составляет примерно 1% веса тела.

Лимфоузел построен так, чтобы создать большую поверхность обмена лимфы и протекающей через капилляры лимфоузла крови.

Лимфоидная ткань лимфоузла покрыта соединительнотканной оболочкой. Под оболочку лимфоузла из нескольких лимфатических сосудов притекает лимфа, просачивающаяся через щели лимфоидной ткани лимфоузла и вытекающая из одного лимфатического сосуда.

Лимфатические узлы являются наиболее многочисленными органами иммунной системы. Лежат на путях следования лимфатических сосудов от органов и тканей к лимфатическим протокам и стволам.

Морфологически в лимфатических узлах выделяют мозговой (медуллярный) и корковый (кортикальный) слой.

В корковом слое содержится несколько лимфатических фолликулов — так называемых В-зависимых зон, в которых протекают процессы пролиферации

и дифференцировки В-лимфоцитов. Особенно активно такие реакции происходят в светлых (герминативных) центрах фолликулов.

В-клетки имеют специфическое микроокружение из фолликулярных дендритных клеток и эпителиоцитов.

Паракортикарный слой лимфоузлов принадлежит к Т-зависимой зоне. Здесь содержатся наивные и компетентные Т-лимфоциты, окружённые интердигитальными дендритными клетками и эпителиоцитами. Именно в этой зоне происходит антигенная презентация, запускающая иммунный ответ против определённого патогена.

Возрастные изменения инволютивного характера (уменьшение количества лимфоидной ткани, разрастание жировой ткани) в лимфатических узлах наблюдается уже в юношеском возрасте. Многие лимфатические узлы небольших размеров полностью замещаются соединительной тканью. Рядом лежащие узлы могут срастаться друг с другом и образовывать более крупные узлы сегментарной или лентовидной формы.

Лимфоидные узелки

Групповые лимфоидные узелки (Пейеровы бляшки) — представляют собой скопления лимфоидных узелков, располагающиеся в стенках тонкой кишки, главным образом, в стенках конечного отдела подвздошной кишки.

Они имеют вид плоских образований преимущественно овоидной или круглой формы, незначительно выступающих в просвет кишки. Круговые складки слизистой оболочки на месте лимфоидных бляшек отсутствуют (прерываются). Поверхность лимфоидных бляшек неровная, бугристая. Располагаются лимфоидные бляшки в основном на стороне, противоположной брыжеечному краю кишки. Лимфоидная бляшка образована лимфоидными узелками с центром размножения (от 5 до 150 и более), расположенными в диффузной лимфоидной ткани.

Одиночные лимфоидные узелки – располагаются в толще слизистой оболочки и подслизистой основы глотки и пищевода; желудка, тонкой и толстой кишки;

гортани, трахеи, главных, долевых и сегментарных бронхов; мочеточников, мочевого пузыря, мочеиспускательного канала и других (полых) трубчатых органов.

Лимфоидные узелки располагаются на различном расстоянии друг от друга и на разной глубине, их количество вариабельно, у многих имеются центры размножения.

Одиночные лимфоидные узелки образуются на 5—6-м месяцах внутриутробной жизни, центры размножения в них формируются преимущественно после рождения.

Количество и размеры лимфоидных узелков, число клеток лимфоидного ряда, их образующих, достигают максимума в детском и подростковом возрастах, а далее постепенно уменьшаются. Даже в пожилом и старческом возрастах лимфоидные узелки не исчезают полностью.

Артериальное кровоснабжение происходит из вокругузелковых гемокапиллярных сетей, образованных ветвями органных артерий.

Венозная кровь оттекает в одноименные вены.

Иннервация лимфоидных узелков и лимфоидных бляшек осуществляется ветвями блуждающих нервов, чревного сплетения (и других нервов, в зависимости от их расположения).

Лимфатические сосуды впадают в регионарные для этих органов лимфатические узлы.