
ГОРМОНАЛЬНЫЕ ПРЕПАРАТЫ. ГОРМОНЫ ЩИТОВИДНОЙ И ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

Медико-биологический факультет

Гормональные препараты - лекарственные средства, действующим началом которых являются естественные гормоны или синтетические вещества, обладающие гормоноподобным действием, активаторы или ингибиторы синтеза и секреции естественных гормонов.

« Классические » эндокринные железы (голубоватые точки) и некоторые органы диффузной эндокринной системы (фиолетовые

точки)

Классификация гормональных препаратов

I. Препараты естественных желёз (человека и животных)

- экстракты, вытяжки, измельченный порошок
- очищенный гормон

II. Синтетические гормональные препараты

- по химической структуре соответствуют естественным гормонам (синтетическое или биотехнологическое получение) (стероиды, инсулин и т.д.)
- по химической структуре не соответствуют естественным гормонам (стильбены и т.д.)
- III. Препараты, стимулирующие или угнетающие функциональную активность эндокринных желёз
- гормональные препараты
- синтетические вещества

Принцип гормонотерапии

I. Заместительная гормонотерапия

- введение соответствующих гормонов
- индивидуальный подбор доз
- введение с учетом суточных колебаний концентрации
- постоянное лечение

II. Стимулирующая гормонотерапия

- применение тропных гормонов гипофиза
- лечение прерывистое (для профилактики атрофии гипофиза и эндокринной железы)
- возможность развития синдрома отмены

III. Блокирующая гормонотерапия

- с помощью гормонов
- антигормоны

Классификация гормональных препаратов по химическому строению

Препараты белкового и пептидного строения

ЛГ, ФСГ, АКТГ, ТТГ, СТГ, пролактин, вазопрессин, аденогипофиз окситоцин

гипоталамус – соматолиберин, гонадолиберин, соматостатин, тиролиберин. разные эндокринные железы - паратиреоидный гормон, инсулин, кальцитонин, GLP-1.

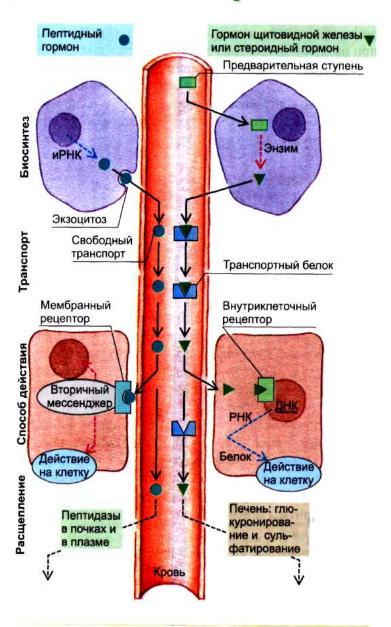
II. Препараты производные аминокислот

- левотироксин натрия *(тироксин)
- лиотиранин
- мелантонин*
- эпинефрин* (адреналина гидрохлорид)
- норэпинефрин* (норадреналина гидротартрат)
- добутамин* (дофамин)

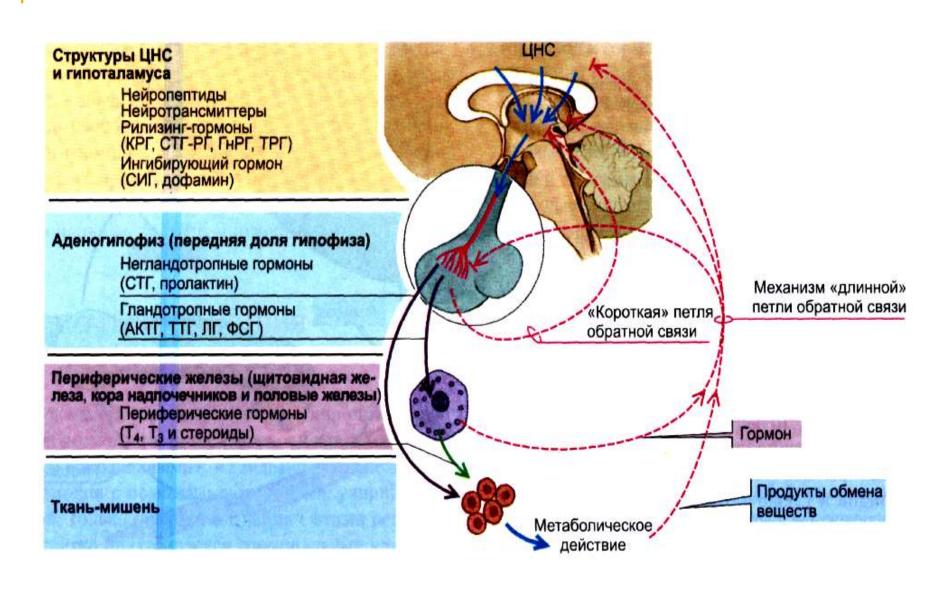
III. Препараты стероидной структуры

- минералокортикоиды
- глюкокортикоиды
- андрогены
- эстрогены
- гестагены

⁻ анаболические стероидные средства
* - препараты, использующиеся в России (Федеральное руководство по использованию лекарственных средств, 2010 г.)


Классификация гормонов по источнику получения / синтеза

ОРГАНЫ/ТКАНИ	ГОРМОНЫ/НЕЙРОПЕПТИДЫ	
Классические эндогенные железы		
АДЕНОГИПОФИЗ	ЛГ, ФСГ,АКТГ, ТТГ, СТГ, ПРОЛАКТИН	
щитовидная	ТИРОКСИН (T_4), ТРИЙОДТИРОНИН(T_3)	
ПАРАЩИТОВИДНАЯ ЖЕЛЕЗА	ПАРАТИРЕОИДНЫЙ ГОРМОН	
ОСТРОВКИ ЛАНГЕРГАНСА (ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА)	ИНСУЛИН, ГЛЮКАГОН, СОМАТОСТАТИН, ПАНКРЕАТИЧЕСКИЙ ПОЛИПЕПТИД	
кора надпочечников	МИНЕРАЛОКОРТИКОИДЫ, ГЛЮКОКОРТИКОИДЫ, АНДРОГЕНЫ	
яичник	ЭСТРОГЕНЫ, ГЕСТАГЕНЫ, ИНГИБИН, РЕЛАКСИН, АКТИВИН, ФОЛЛИСТАТИН	
яичко	АНДРОГЕНЫ, ИНГИБИН	
ПЛАЦЕНТА	ЧЕЛОВЕЧЕСКИЙ ХОРИОНИЧЕСКИЙ ГОНАДОТРОПИН, ЧЕЛОВЕЧЕСКИЙ ПЛАЦЕНТАРНЫЙ ЛАКТОГЕН, ПРОГЕСТЕРОН, ЭСТРОГЕН	


Классификация гормонов по источнику получения/синтеза (продолжение)

ГОРМОНОПРОДУЦИРУЮЩИЕ ТКАНИ И РАССЕЯННЫЕ ЭНДОКРИННЫЕ КЛЕТКИ		
шишковидная железа	МЕЛАТОНИН	
ГИПОТАЛАМУС	А) РИЛИЗИНГ- И ИНГИБИРУЮЩИЕ ГОРМОНЫ (ГИ РГ, СТГ-РГ, КРГ, ТРГ, СОМАТОСТАТИН) Б) ВАЗОПРЕССИН/АНТИДИУРЕТИЧЕСКИЙ ГОРМОН (АДГ), ОКСИТОЦИН (ВЫДЕЛЯЕТСЯ В НЕЙРОГИПОФИЗЕ)	
ДРУГИЕ ОБЛАСТИ ЦНС	все нейропептиды	
С- КЛЕТКИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ	КАЛЬЦИТОНИН	
ЭПИТЕЛИЙ ЛЕГКИХ	почти все нейропептиды	
ПРЕДСЕРДИЯ	ПРЕДСЕРДНЫЙ НАТРИЙУРЕТИЧЕСКИЙ ГОРМОН (ПНГ)	
печень	АНГИОТЕНЗИНОГЕН, ИФР-1 , ИФР2 (СОМАТОМЕДИНЫ)	
ЖЕЛУДОЧНО-КИШЕЧНЫЙ ТРАКТ	ГАСТРИН, ХОЛЕЦИСТОКИНИН, СЕКРЕТИН, ГИП, ВИП, МОТИЛИН, СОМАТОТРОПИН, ЭНКЕФАЛИНЫ, ТАХИКИНИН, ТРЕЛИН	
почки	РЕНИН, ЭРИТРОПОИТИН, КАЛЬЦИТРИОЛ	
жировые клетки	ЛЕПТИН	
иммунная система	ГОРМОНЫ ВИЛОЧКОВОЙ ЖЕЛЕЗЫ, ЦИТОКИНЫ	
ТКАНЕВЫЕ ГОРМОНЫ ИЛИ МЕДИАТОРЫ	ЭЙКОЗАНОИДЫ, ГИСТАМИН, СЕРОТОНИН, БРАДИКИНИН	

Механизм действия гормонов

Механизм обратной связи

Гормоны гипофиза

Семейство СТГ

- СТГ- соматотропный гормон
- пролактин
- плацентарный лактоген

Глюкопротеидные гормоны

- ЛГ- лютеинизирующий гормон
- ФСГ фолликулостимулирующий гормон
- ХГ хорионический гонадотропин
- ТТГ- тиреотропный гормон

Производные проопиомеланокортина

- АКТГ адренокортикотропный гормон
- альфа- МСГ меланоцитстимулирующий гормон
- бета- МСГ меланоцитстимулирующий гормон
- гамма- липотропин

Гормоны гипоталамуса

Либерины:

- соматолиберин
- гонадолиберин
- протирелин (тиролиберин)
- кортиколиберин

Статины:

- соматостатин
- добутамин*

Препараты АКТГ

- *Кортикотропин* (козитропин) получают из гипофиза убойного скота (пептид, состоящий из 39 аминокислот) (выраженная иммуногенность)
- **Темракозактрин** (козинтропин, тетракозактид и т.д.) синтетический аналог АКТГ (состоит из 24 аминокислот) (слабая иммуногенность)

Механизм действия:

- стимулирует продукцию глюкокортикоидов

- при вторичной гипофункции коры надпочечников
- для предупреждения атрофии надпочечников при длительном лечении глюкокортикоидами

Препараты соматотропного гормона

Соматот из человеческого гипофиза (трупный материал) (белок, состоящий из 191 аминокислоты), соматотропин животных не эффективен

Рекомбинантный соматотропин – генно-инженерный СТГ (соматрем) Механизм действия:

- в печени и в других органах стимулирует синтез инсулиноподобного фактора роста (ЙФР-1)
- действует на пластику эпифиза трубчатых костей (стимулирует рост костей скелета)
- активный синтез соединительной ткани (коллаген, хондроитин сульфат)
- стимулирует синтез белка, увеличивает мышечную массу и массу тела
- увеличивает количество гепатоцитов, клеток вилочковой железы, щитовидной, надпочечников, половых желёз
- снижает концентрацию холестерина, повышает уровень ТГ, уменьшает обмен жировой ткани

- Гипофизарная карликовость
- ускорение заживления ран и переломов у пожилых

Препараты соматостатина (тетрадекапептид)

- естественный соматостатин не применяется из-за кратковременного действия
- синтетические аналоги соматостатина

Октреотид *(сандостатин), ланреотид*(соматулин)

Механизм действия:

- снижение секреции СТГ, ТТГ
- подавление секреции желудочного сока и моторики ЖКТ
- подавление секреции в ЖКТ пептидов и серотонина

- акромегалия
- эндокринные опухоли ЖКТ и поджелудочной железы

Препараты тиреотропного гормона

Тиреотропин — очищенный экстракт передней доли гипофиза убойного скота (содержит ТТГ)

Механизм действия:

- Увеличение массы щитовидной железы
- Увеличение синтеза Т3 и Т4
- Усиление захвата йода щитовидной железой

Применение:

- при недостаточности щитовидной железы
- дифференциальная диагностика микседемы

Тиреотропин – рилизинг – гормон (трипептид)

Протирелин (рифатирон, либерол)

Механизм действия:

- усиление секреции ТТГ и пролактина

- дифференциальная диагностика различных форм гипотиреоза
- для купирования астенодепрессивного синдрома, астении

Гонадотропные гормоны

- фоллитропин альфа *(гонал-Ф*) получен генно-инженерным методом из клеток яичника китайского хомячка
- фоллитропин бета *(пурегон*)
- урофоллитропин (смесь ФСГ и следы ЛГ) получают из мочи женщин в менопаузе
- *гонадотропин хорионический* * (хорагон*) (содержит ФСГ и ЛГ) выделяют из мочи беременных
- **менотропины** (гонатропин менопаузный*, менопур*, мерионал*) (содержит ФСГ и ЛГ) получают из мочи женщин в менопаузе

Механизм действия:

- стимуляция гаметогенеза и созревание фолликулов у женщин
- стимуляция сперматогенеза
- усиление синтеза мужских и женских половых гормонов

- гипогонадотропный гипогонадизм
- бесплодие
- крипторхизм
- стимуляция сперматогенеза
- половой инфантилизм

^{* -} препараты, использующиеся в России (Федеральное руководство по использованию лекарственных средств, 2010 г.)

Гонадотропин – рилизинг - гормона

Гонадорелин, бусерелин*, трипторелин, гозерелин (упролид, гистрелид)

Механизм действия:

- при «пульсирующей» терапии стимулирует образование ЛГ и ФСГ
- при создании стабильной концентрации снижает образование ЛГ и ФСГ

Применение:

- диагностика и лечение гипогонадизма
- при раке предстательной и молочных желёз
- лечение бесплодия
- эндометриоз

Препараты лактотропного гормона

Пактин (экстракт гипофиза убойного скота) **Протирелин** (усиливает синтез пролактина) **Механизм действия:**

- стимулирует развитие молочных желёз
- повышает лактацию

Показания:

-усиление лактации в послеродовый период

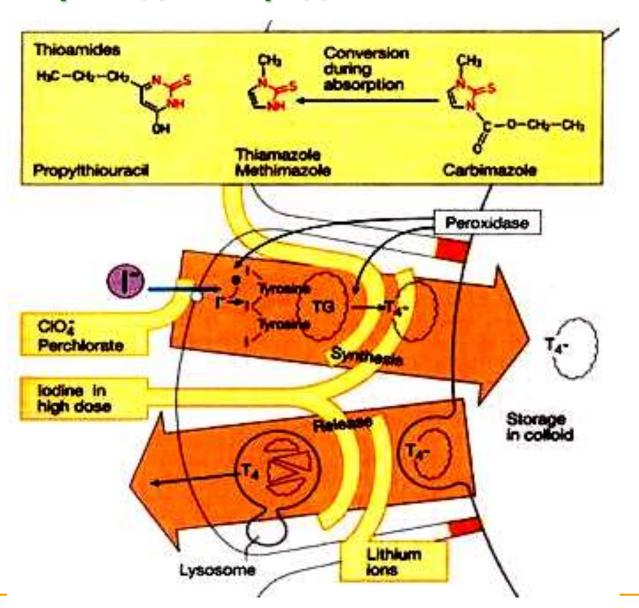
ТИРЕОТРОПНЫЕ СРЕДСТВА

Средства, применяемы при гипотиреозе

- Протирелин (тиротропип-рилизинг-гормон)
- **Лиотиронин*** (трийодтиронина гидрохлорид)
- Левотироксин натрий* (тироксин)
- Тиретом (лиотиронин + левотироксин)
- Тиреоидин
- Калия йодид*

Фармакодинамика левотироксина

- 1. Активация всех видов субстратного обмена (углеводного, жирового, белкового);
- 2. усиление основного обмена и повышением потребления O₂;
- 3. повышение температуры тела (особенно в ответ на охлаждение);
- 4. повышение работы сердца (увеличение силы и частоты сердечных сокращений, увеличение сердечного выброса)
- 5. стимуляция роста и развития тканей.


Показания к применению гормональных препаратов щитовидной железы

- Гипотиреоз (микседема у взрослых, кретинизм у детей)
- Дефицит гормонов щитовидной железы
- Рецидив эндемического зоба

Антитиреоидные средства

- Препараты, разрушающие клетки фолликулов щитовидной железы
 - □ Препараты радиоактивного йода I¹³¹
- Препараты, нарушающие захват йода железой
 - Калия перхлорат
- Препараты, угнетающие синтез тиреотропных гормонов
 - □ Тиамазол* мерказолил
 - Пропилтиоурацил*
- Препараты, угнетающие продукцию ттг
 - Калия йодид*

Механизм действия антитиреоидных средств

Показания к применению антитиреоидных средств

- Тиретоксикоз (базедова болезнь)
- Дифузный токсический зоб, узловой токсический зоб

Средства используемые для лечения сахарного диабета

Классификация гипогликемических средств

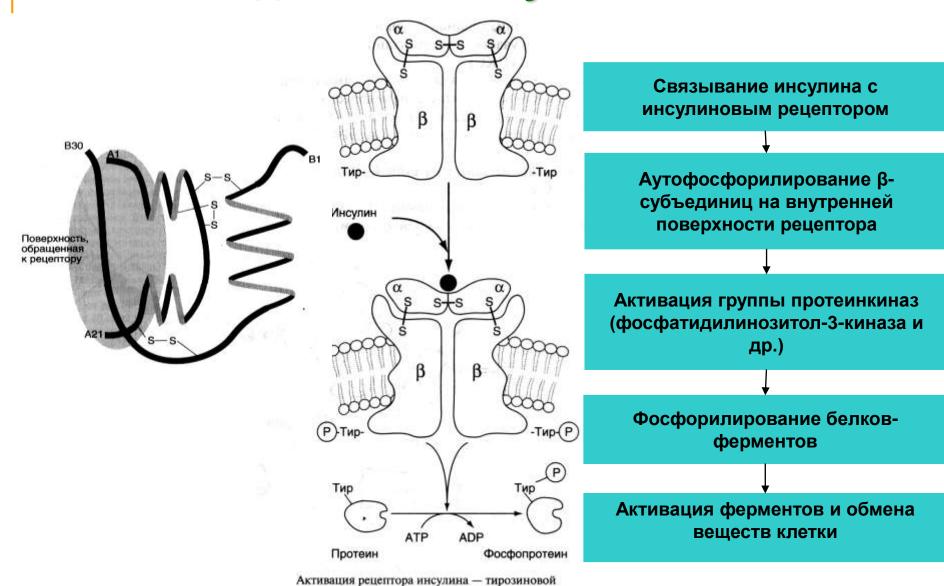
Инсулины

- короткого и ультракороткого действия
- средней продолжительности действия
- длительного действия и сверхдлительного действия
- комбинированного действия (бифазные или двухфазные инсулины)

Аналоги препарата инсулина человеческого

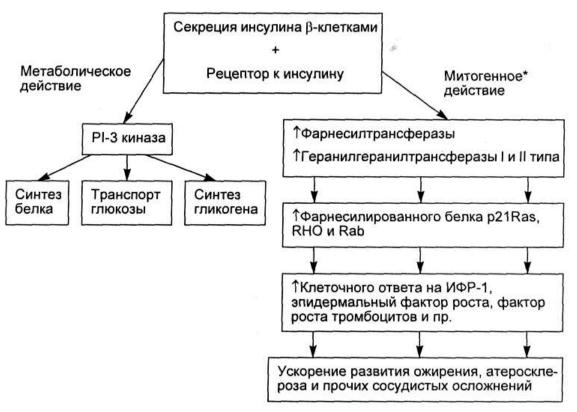
(модифицированные препараты инсулина человеческого отличающиеся по структуре хотя бы на одну аминогруппу или аминокислотную последовательность).

оригинальные препараты

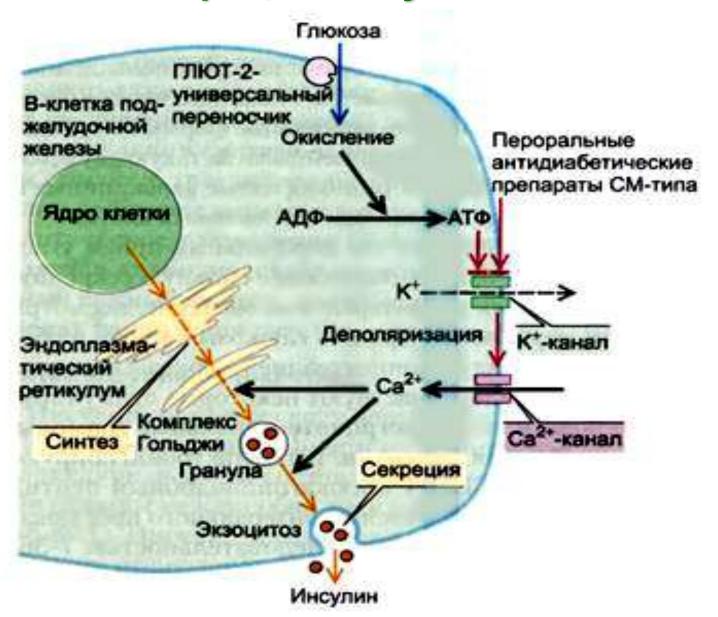

Например: синтез быстродействующего аналога человеческого инсулина осуществляют путем изменения положений 28 и 29 аминокислот в В-цепи человеческого инсулина (инсулин лизпро). Замена аспарагиновой кислоты на пролин в положении В28 (инсулин аспартат); в положении В3 замена глузилина аспарагина на лизин и лизин в положении В29 на глутаминовую кислоту (инсулин глулизин)

воспроизведенные аналоги препарата инсулина человеческого

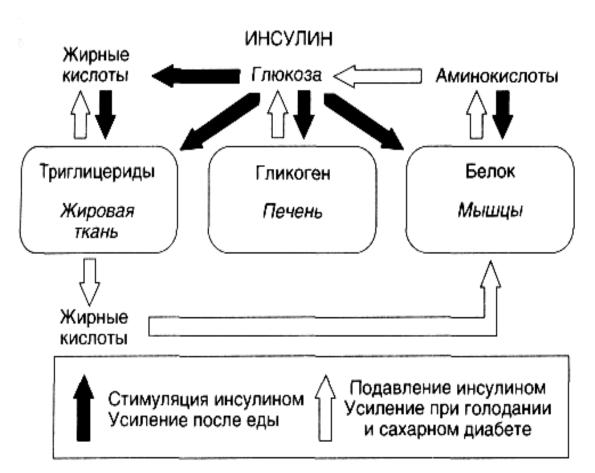
Классификация гипогликемических средств (продолжение)


- Синтетические гипогликемические средства
 - производные сульфонилмочевины
 - прандиальные регуляторы гликемии (метиглиниды)
 - **□ бигуаниды**
 - инсулиновые сенситайзеры (тиазолидиндиноны)
 - ингибиторы α- глюкозидазы
 - Лекарственные средства с инкретиновым действием
 - агонисты рецепторов глюкагоноподобного пептида
 - 1 (инкретиномиметики)
 - □ ингибиторы DPP-4

Механизм действия инсулина


протеинкиназы.

Пострецепторные механизмы действия инсулина



- Комплекс инсулинрецептор после образования погружается в цитозоль и в дальнейшем разрушается в лизосомах.
- Причём деградации подвергается лишь остаток инсулина, а освобождённый рецептор транспортируется обратно к мембране и снова встраивается в нее

Механизм секреции инсулина

Действие инсулина

Углеводный

- Запасает глюкозу в виде гликогена в печение и в виде ТГ в жировой ткани
- Запасает аминокислоты в мышцах
- Стимулирует утилизацию глюкозы мышцами (гликолиз) (активация ГЛЮТов) – высвобождение энергии
- □ Подавляет распад триглицеридов, гликогена и белка, и превращение аминокислот в глюкозу (глюконеогенез)

Белковый

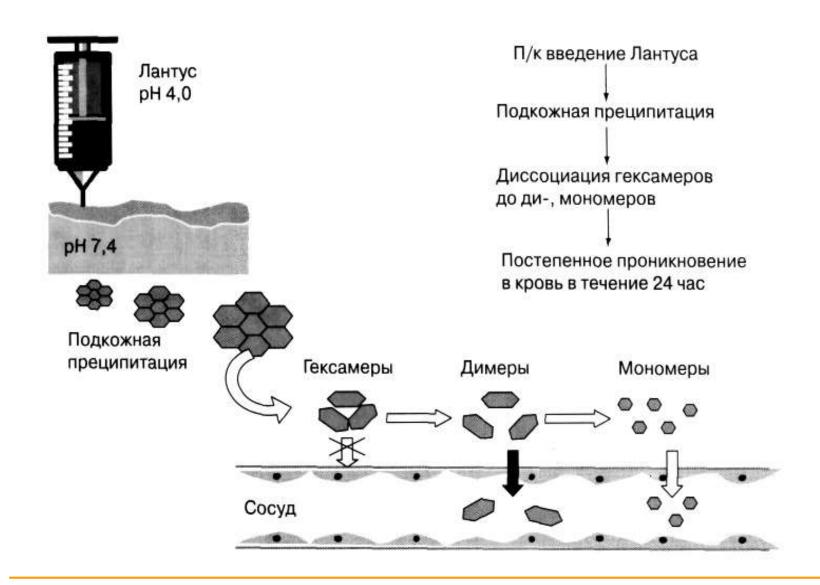
Стимулирует анаболизм

Жировой

- Угнетает липолиз
- Уменьшает кол-во кетоновых тел в крови

Сахароснижающее действие инсулина

печень	мышцы	жировая ткань
Стимуляция захвата глюкозы	Стимуляция захвата глюкозы	Стимуляция захвата глюкозы (вклад жировой ткани по сравнению с
Подавление продукции глюкозы (глюконеогенеза и гликогенолиза)	Снижение притока к печени субстратов глюконеогенеза (в частности, аланина, пирувата и лактата)	мышцами невелик) Снижение притока к печени субстратов (глицерина) и источников энергии (свободных жирных кислот) глюконеогенеза


Источники получения инсулина

- Поджелудочная железа животных
 - имеет историческое значение, высокая иммуногенность
- Препараты инсулина человека полусинтетические
 - получают из свиного методом ферментной трансформации (минимальная иммуногенность)
- Инсулин человека генно-инженерные (ДНК рекомбинантные)
 - минимальная иммуногенность

В зависимости от степени очистки препараты инсулина

- Монопиковые (очищенные)
- Монокомпонентные (высокоочищенные)

Схема пролонгации действия инсулина лантуса

1. Препараты инсулина ультракороткого действия

(гипогликемический эффект развивается через 10–20 мин после п/к введения пик действия 0,5 - 2 часа, длительность действия 3 - 4 часа) п/к, в/м, в/в)

- инсулин лизпро* (хумалонг)
- инсулин аспарт* (новорапид пенфилл, новорапид флекспен)
- инсулин глулизин* (апидра солостар*).

- **2.** Препараты инсулина короткого действия (начало действия 30-60 мин, пик действия 2 4 часа, длительность до 8 часов) п/к, в/м, в/в
- Инсулин растворимый (человеческий генноинженерный - актрапид НМ, инсуман рапид, хумулин регулятор и т.д.),
- Инсулин растворимый (человеческий полусинтетический биогулин Р, хумодар Р)
- Инсулин растворимый (свиной монокомпонентный - моноинсулин МК, пенсулин, актрапид МС)

- 3. Препараты инсулина средней продолжительности действия (начало действия 1,5-2 ч, пик действия 4-12 часов, длительность 16-35 часов), пролонгация за счёт протамина (изофан, протофан, бизал) или цинка
 - **Инсулин изофан (человеческий генно инженерный)** (Биосулин Н, Гансулин Н, Генсулин Н, Инсуман Базал ГТ, Инсуран НПХ, Протафан НМ, Ринсулин НПХ, Хумулин НПХ.)
 - Инсулин-цинк (генно инженерный) (мотард HM, хумулин Л)
 - Инсулин -цинк (полусинтетический) (бринсулимиди Ψ , инсулидд Π)
 - Инсулин изофан (полусинтетический) (бринсулимиди ЧСП, пенсулин ЧС)
 - Инсулин-цинк (свиной монокомпонентный) (бринсулимиди МК, инсулин лонг СМК, монотард Б)
 - Инсулин-изофан (свиной монокомпонентный) (*пенсулин СС*, *протофан МС*)

- 4. Препараты инсулина длительного действия (максимум действия 8-24 часа, длительность действия 28 часов)
 - Инсулин цинк (генно-инженерный) кристалическая суспензия (ультратард НМ)
 - Инсулин гларгин (генно-инженерный) (*лантус*) Инсулин с безпиковым базальным профилем
- 5. Препараты инсулина сверхдлительного действия (больше 24 часов с минимальной вариацией гипогликемического профиля)
- ✓ Инсулин деглудек (тресиба пенфилл*)

- 6. Препараты инсулина комбинированного действия (смесь растворимого инсулина короткого действия и изофан инсулин) (быстрый эффект 30 минут, максимум действия 2 -8 часов и длительность действия 18 20 часов)
 - Инсулин двухфазный (генно инженерный) (*хумулин МЗ**, *генсулин МЗ0**)
 - Инсулин аспарт двухфазный (новомикс*)
 - Инсулин лизпро (двухфазный)

Аналоги инсулина человека инсулины ультракороткого действия

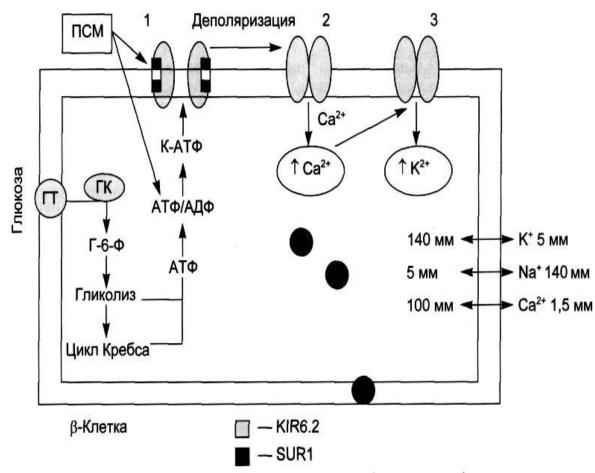
- Инсулин лизпро производное человеческого инсулина, полученное путем перестановки двух аминокислотных остатков в молекуле инсулина (лизин и пролин в положениях 28 и 29 В-цепи). Модификация молекулы инсулина нарушает образование гексамеров и обеспечивает быстрое поступление препарата в кровь. Почти сразу после п/к введения в тканях молекулы инсулина лизпро в виде гексамеров быстро диссоциируют на мономеры и поступают в кровь.
- **Инсулин аспарт** замена пролина в положении В28 на отрицательно заряженную аспарагиновую кислоту. После п/к введения он быстро распадается на мономеры.
- **Инсулин глулизин -** замещение аминокислоты аспарагин человеческого инсулина в позиции ВЗ на лизин и лизина в позиции В29 на глутаминовую кислоту способствует более быстрой абсорбции.

Аналоги инсулина ультракороткого действия можно вводить непосредственно перед приемом пищи или после еды

Аналоги инсулина длительного действия

■ Инсулин гларгин — аналог человеческого инсулина, полученный методом ДНК-рекомбинантной технологии — первый препарат инсулина, который не имеет выраженного пика действия поскольку высвобождается в кровоток с относительно постоянной скоростью и обеспечивает 24-часовой гликемический контроль.

Получение: путем двух модификаций в молекуле инсулина: заменой в позиции 21 А-цепи (аспарагин) на глицин и присоединением двух остатков аргинина к С-концу В-цепи. Препарат представляет собой прозрачный раствор с рН 4. Кислый рН стабилизирует гексамеры инсулина и обеспечивает длительное и предсказуемое всасывание препарата из подкожной клетчатки. Однако из-за кислого рН инсулин гларгин нельзя комбинировать с инсулинами короткого действия, которые имеют нейтральный рН.


Синтетические гипогликемические средства

Производные сульфанилмочевины

- □ Глибенкламид* *(манинил*)*
- □ Глипизид (минидиаб)
- Гликлазид* (диабетон МВ*, глидиаб*)
- □ Гликвидон* *(глюренорм*)*
- Глимеперид* (амарил*)

Регуляция секреции инсулина под влиянием препаратов сульфонилмочевины

- повышение высвобождения инсулина из β-клеток поджелудочной железы
- снижение глюкагона в сыворотке крови
- повышенние чувствительности тканей к инсулину

 $1-K^+$ -АТФ-чувствительный канал; 2- вольтаж-зависимый — Ca^{2+} -канал; $3-Ca^{2+}$ -активируемый K^+ -канал; $\Gamma T-\Gamma$ лют-2; $\Gamma K-$ глюкокиназа.

Несульфанилмочевинные стимуляторы секреции инсулина

(прандиальные регуляторы гликемии) (меглитиниды)

- Репаглинид* (производное бензойной кислоты)
- **Натеглинид*** (*старликс*) (производное фенилаланина)

Принимают перед приемом пищи. Действие короткое 1-1,5 часа. Применяют для подавления постпрандиальной гипергликемии. Секреторное действие на выделение инсулина. Механизм действия как у производных сульфанилмочевины.

Бигуаниды (производные гуанидина)

- Метформин* (глиформин*, сиофор*, глюкофаж* и т.д.)

Пролонгированные формы глюкофаж лонг*

В настоящее время для лечения больных СД из этой группы препаратов используют только метформин.

Механизм действия: снижение уровня глюкозы за счет подавления глюконеогенеза в печени и увеличения периферической утилизации глюкозы, уменьшения всасывания глюкозы из ЖКТ, повышение связывания инсулина со специфическими рецепторами, гиполипидемическое действие

Инсулиновые сенситайзеры

(синтетические лиганды ядерных γ-рецепторов, активируемых пролифератором пероксисом - PPARγ)

- Тиоглитазон (*актос*)
- Росиглитазон (авандия*)
- Пиоглитазон* (астрозон*, диаглитазон*)

Механизм действия:

- ✓ Активирует ядерные рецепторы (PRARγ)
- ✓ Снижение инсулинорезистентности
- ✓ Повышение захвата глюкозы периферическими тканями
- ✓ Увеличение секреции инсулина в-эндокриноцитами
- ✓ Снижение глюконеогенеза и гипергликемии

Механизм действия ингибиторов α - глюкозидазы

Акарбоза (глюкобай)

- ингибирует кишечную α глюкозидазу и ↓ образование моносахаридов
- ↓ всасывание моносахаридов
- ↓ постпрандиальная гипергликемия

ИНКРЕТИНОМИМЕТИКИ

- Агонисты рецепторов глюкагоноподобного пептида -1
 - □ Эксенатид*
 - □ Лираглутид*
- Ингибиторы дипептилпептидазы 4 типа
 - □ ситаглиптин*
 - □ вилдаглиптин*
 - □ саксаглиптин*
 - □ линаглиптин*

Агонисты рецепторов глюкагоноподобного пептида -1 (Эксенатид*, Лираглутид*)

Синтетические аналоги GLP-1, обладающие более длительным периодом полураспада

- ■Эксенатид является синтетическим аналогом экседина-4, его аминокислотная последовательность на 50% совпадает с GLP-1 человека. Основу препарата составляет вещество экседин-4, полученное из слюны ящера-ядозуба. Применяют эксенатид парентерально 2 раза в сутки в комбинации с пероральными сахароснижающими препаратами.
- ■Лираглутид соединенный с остатком жирной кислоты синтетический аналог GLP-1 на 97% совпадающий с аминокислотной последовательностью человека. Применение подкожно 1 раз в сутки.

Селективные ингибиторы дипептилпептидазы 4

Вилдаглиптин* и Ситаглиптин* –

((2R)-4-оксо-4-[3-(трифлуорометил)-5,6дигидро[1,2,4]триазоло[4,3-α]пиразин-(8H)-ил]-1-(2,4,5-трифлуорофенил)бутан-2-амин)

являются одними из самых сильных ингибиторов DPP-4 среди пролин-селективных пептидаз. В основе его механизма действия лежит подавление плазменной активности DPP-4>80%, что соответствует его концентрационному значению >100нМ и способствует увеличению уровней активного GLP — 1 и GIP (М.Б. Анциферов, Л.Г. Дорофеева, 2007).

Показания: При монотерапии как в дополнение к диете и физическим нагрузкам для улучшения контроля гликемии у пациентов с СД типа 2. При комбинированной терапии в качестве дополнения к метформину, производному сульфанилмочевины, тиазолидиндинону и т.д. в случае не достижения адекватного гликемического контроля

Противопоказания:

СД 1 типа , тяжелая почечная недостаточность, беременность и лактация, диабетические комы Повышенная чувствительность к препарату

ИНКРЕТИНОМИМЕТИКИ (на основе Gymnema sylvestre)

Препараты:

Пробетта (США), **Диабетта** (Россия)

Механизм действия:

- Стимулирующее влияние глюкозы на выделение инсулина
- Уменьшение скорости поступления пищи из желудка в кишечник
- ↓ апоптоз β-клеток
- Способствует неогенезу и пролиферации островков из стволовых клеток поджелудочной железы