Инструкция для студентов:

Для каждой задачи опишите тип нарушения и поясните, на каком звене доставки или использования O_2 /выработки ROS произошёл сбой.

Нарисуйте простую схему ключевых звеньев патогенеза (например, « \downarrow PaO₂ $\rightarrow \downarrow$ AT $\Phi \rightarrow$ ацидоз \rightarrow дисфункция насосов \rightarrow отёк клеток»).

Приведите ожидаемые изменения основных показателей (PaO_2 , SaO_2 , лактат, pH, ROS-индикаторы) и клинические симптомы.

Не фокусируйтесь на подробностях лечения — цель задания понять, почему и как развивается гипоксия или гипероксия на клеточном и системном уровнях.

Задача.

35-летний спортсмен получил растяжение голеностопного сустава и наложил себе тугую эластичную повязку на голень примерно на 2 часа. После снятия повязки он резко ощутил сильную боль, «жжение» и увидел выраженный отёк в области травмы; пальпаторно мышца напряжена, пульс на стопе прощупывается, но при анализе венозной крови обнаружено повышенное содержание лактата.

Вопросы:

Какой тип гипоксии здесь развивается и почему именно так?

Почему при восстановлении кровотока (реперфузии) появляется усиленная боль и повышается лактат?

Какие клеточные механизмы лежат в основе реперфузионного повреждения мышечной ткани?

Какие изменения в рН крови и в маркёрах мышечного повреждения вы ожидали бы увидеть?

Ответ

1. Тип гипоксии:

Смешанная ишемическая с последующей реперфузионной гипоксией.

2. Причина усиленной боли и лактата:

Во время ишемии – накопление метаболитов (лактата), при реперфузии – резкий выброс ROS и воспаление.

3. Клеточные механизмы:

Ишемия
$$\to \downarrow$$
 ATФ \to нарушение Na⁺ /K⁺ -ATФазы \to отёк клеток \downarrow

Реперфузия \to увеличение количества ROS \to липидная пероксидация \to разрушение мембран \to боль

4. Ожидаемые изменения:

Лактат в венозной крови – значительно ↑

Креатинкиназа (КФК) – умеренно повышена как маркер мышечного повреждения