ОБЛАСТИ ПРИМЕНЕНИЯ МКА. ПОЛУЧЕНИЕ МКА ДЛЯ ПРОИЗВОДСТВА ДИАГНОСТИЧЕСКИХ ПРЕПАРАТОВ. ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ МКА В КЛИНИКЕ

Доцент кафедры молекулярной биологии и генетики, к.м.н. Замарина Т.В.

Основные направления использования моноклональных антител

- Диагностика (in vitro u in vivo)
 - Очистка антигенов

Профилактика и лечение различных заболеваний

Области применения МКА и диагностических препаратов, приготовленных на их основе

in vitro

- Экспериментальная медицина
- Микробиология
- Иммунология
- Онкология
- Трансплантология
- Гематология
- Кардиология
- Эндокринология
- Акушерство и гинекология

in vivo

- Онкология
- Гематология
- Эндокринология

Моноклональные средства, применяемые для лечения и профилактики заболеваний различной этиологии

in vivo

- Онкология
- Трансплантология
- Гематология
- Эндокринология
- Инфекционные болезни

ex vivo

- Онкология
- Гематология
- Эндокринология
- Кардиология
- Токсикология

ДИАГНОСТИЧЕСКОЕ НАПРАВЛЕНИЕ ИММУНОЛОГИЯ

- Изучение антигенных систем человека
- Исследование и типирование антигенов клеточной поверхности и антигенов гистосовместимости человека
- Идентификация дифференцировочных антигенов клеток человека, поверхностных структур лимфоцитов
- Анализ структуры иммуноглобулинов, изучение идиотипических детерминант иммуноглобулинов
- Определение функциональной активности отдельных биополимеров, их эпитопов
- Конструирование иммуногенных полипептидов и получение МКА к заданным индивидуальным антигенным детерминантам
- Изучение репертуара генетического полиморфизма тканевых антигенов

- Созданы панели МКА для определения классов и субклассов иммуноглобулинов человека
- Созданы панели МКА к антигенам главного комплекса гистосовместимости I и II классов (системы HLA)
- Получено большое количество МКА к дифференцировочным антигенам практически всех субпопуляций иммуноцитов человека: Т-хелперов/индукторов, Т-супрессоров /киллеров, нормальных киллеров, моноцитов и т.д.
- Определение точной концентрации различных субпопуляций иммуноцитов в крови и суспензиях клеток лимфоидных органов (ф. ORTHO, США)

ИСПОЛЬЗОВАНИЕ МКА КАК СТРУКТУРНЫХ ЗОНДОВ ПРИ ДИФФЕРЕНЦИРОВКЕ И ТИПИРОВАНИИ КЛЕТОК И ТКАНЕЙ

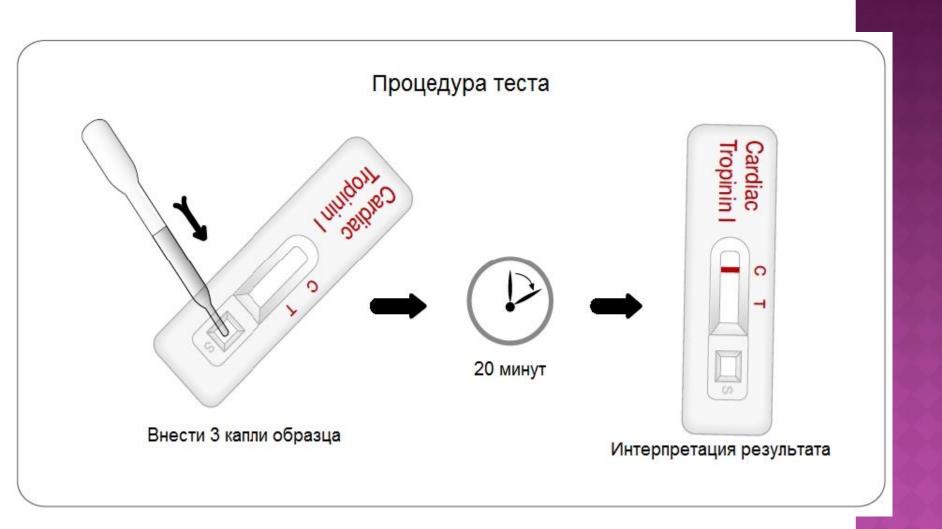
Коммерческие препараты МКА:

- «Лимфоцитарные наборы образцов МКА» для диагностики иммунопатологических состояний и лейкозов человека
- «Наборы изотипспецифических флуорохромированных МКА»

- специфическое связывание с антигенами клеточных мембран
- для обнаружения маркеров разных стадий дифференцировки лейкоцитов человека (CD-Cluster Differentiation)
- для обнаружения антигенов субпопуляций Т- и В-лимфоцитов
- для маркирования антигенов HLA класса II - главного комплекса гистосовместимости человека
- панели МКА, специфичных к антигенам всех групп крови эритроцитов человека: системы АВО, резус, H-фактора

ДИАГНОСТИЧЕСКОЕ НАПРАВЛЕНИЕ ГЕМАТОЛОГИЯ

- Созданы большие панели МКА к различным клеткам крови
- Выделены в чистом виде отдельные молекулы антигенов групп крови и системы HLA, изучен их химический состав, аминокислотные последовательности
- Созданы коммерческие наборы для типирования практически всех группоспецифических антигенов эритроцитов крови: систем ABO, резус, Н, Левис, N, Р и др. (в основном использованы мышиные МКА; для выявления резус -антигена D применяют только человеческие МКА)
- Получены МКА к компонентам плазмы: факторам свертывания крови VIII, С, IX, X, фактору Виллебранда, фибрину, фибриногену и т.д., используемые для
 - 1) количественного определения содержания этих антигенов в крови,
 - 2) изучения механизмов нормальной гемокоагуляции in vitro,
 - 3) изучения патогенеза различных заболеваний


В клинической практике

- 1) МКА к фибрину используют in vivo для точной радиоиммунолокализации венозных тромбов,
- 2) МКА к фибрину, но не взаимодействующие с фибриногеном, предложены для разрушения тромбов с помощью конъюгатов этих МКА с урокиназой.

В доклинических испытаниях этот метод на два порядка был более эффективен, чем лизис тромбов под действием свободной урокиназы.

КАРДИОЛОГИЯ (ДИАГНОСТИКА И ЛЕЧЕНИЕ)

- МКА к низкоплотностному липопротеиду (ароВ)
 сыворотки крови человека используют для:
 - 1) изучения его генетического полиморфизма,
 - 2) определения концентрации липопротеида ароВ в сыворотке, так как это имеет диагностическое и прогностическое значение для пациентов с заболеваниями коронарных артерий,
 - 3) специфического освобождения крови ех vivo от избыточного количества липопротеида ароВ (экстракорпоральная гемосорбция)

ЭНДОКРИНОЛОГИЯ

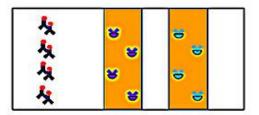
Диагностика

- Высокоспецифичное определение отдельных гормонов в биологических жидкостях человека:
 - хорионического гонадотропина,
 - гормона роста,
 - тиреотропного и др.

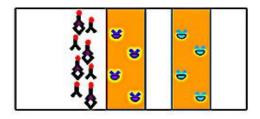
Лечение

Коррекция эндокринных взаимодействий с помощью МКА с выраженной биологической функцией (in vivo)

АКУШЕРСТВО И ГИНЕКОЛОГИЯ

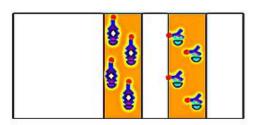

Диагностика

- Ранняя диагностика беременности
- МКА к специфическому эстрогензависимому белку эндометроия (Р24) позволяют проводить дифференциальную диагностику различных гипо- и гиперпластических, а также неопластических изменений в эндометрии (иммуногистохимический метод)
- МКА к одному из пептидов хорионического гонадотропина используют:
 - 1) для контроля течения нормальной беременности,
 - 2) диагностики ранних стадий хорионэпителиомы

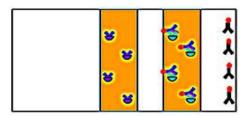

Перспективы

- Экспериментально установлено, что МКА к антигенам гамет(сперматозоидов или блестящей оболочки яйцеклетки) способны препятствовать оплодотворению in vitro
- Обоснован выход на создание контрацептивных вакцин или пассивную сероконтрацепцию с помощью высокоспецифичных МКА к антигенам гамет или гормонов и биологически активных факторов беременности

Принцип иммунохроматографии



А – «сухая» ИХА-полоска. В специальной зоне хроматографической мембраны находятся моноклональные антитела к белку-маркеру, меченые коллоидным золотом. Антитела к другому эпитопу маркера, а также вторичные антитела к меченым моноклональным антителам иммобилизованы в соответствующих зонах захвата.



Б – на полоску нанесена сыворотка, плазма или цельная кровь. Фронт биологической жидкости мигрирует по полоске. При этом молекулы маркера связываются с соответствующими антителами.

Хроматографической поток

В – положительный результат анализа.
 Меченые антитела фиксируются в обеих зонах захвата.

 Г – отрицательный результат анализа.
 Меченые антитела фиксируются только в контрольной зоне. Несвязавшиеся антитела мигрируют далее в абсорбционную мембрану.

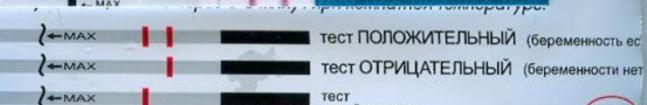
Условные обозначения

Моноклональные антитела против белка-маркера, меченые коллоидным золотом

Иммобилизованные моноклональные антитела против маркера

Иммобилизованные вторичные антитела против монохлональных антител

Молекулы белка- маркера


in vitro diagnostic

НЕ ПРИНИМАТЬ

Способ применения:

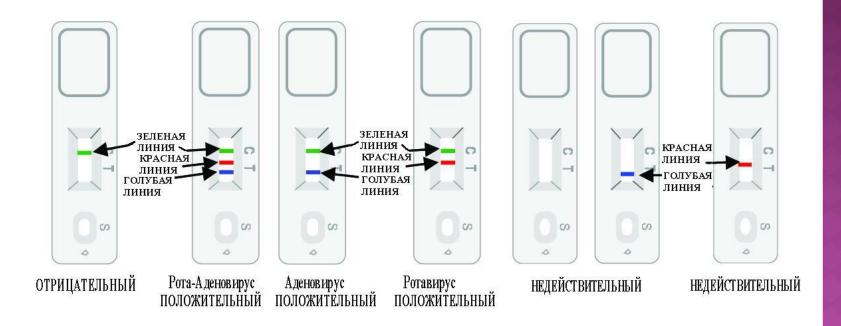
• Тест для самостоятельного использования. • Вскройте пакет, достаньте тест-пол 5 сек. MAY

недействителен **←**MAX (повторите тест)

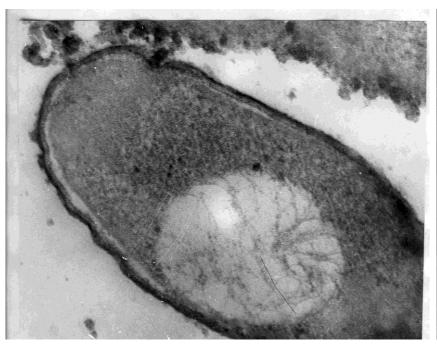
ЧУВСТВИТЕЛЬНОСТЬ: 20мМЕ/ml

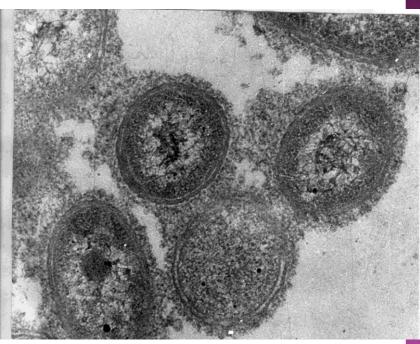
Определение беременности в 1 день задержки менструального цикла. Хранить при температуре (4°С 30°С) производитель: Хелм Медикал ГмбХ (Helm Medical GmbH), Д-20097, Гамбург, Нордканалштрассе, 28, Ге

ИСПОЛЬЗОВАНИЕ МКА В ТРАНСПЛАНТОЛОГИИ В КАЧЕСТВЕ ИММУНОСУПРЕССОРОВ ДЛЯ ПРОФИЛАКТИКИ ОТТОРЖЕНИЯ ОРГАНОВ


• МКА взаимодействуют с антигенами главного комплекса гистосовместимости HLA II класса

Фирма ORTO (США) выпускает наборы МКА OKT-3 (к общей для Т-лимфоцитов детерминанте) При введении в организм МКА способны блокировать эффекторные функции Т-лимфоцитов. Подавляют иммуный ответ на трансплантат

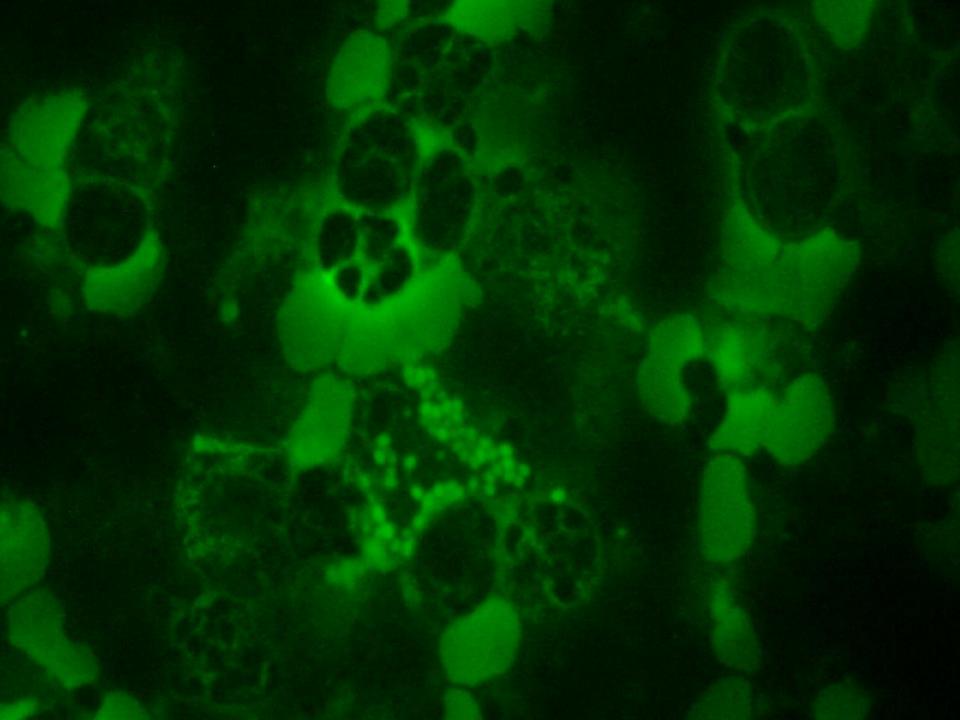

ДИАГНОСТИЧЕСКОЕ НАПРАВЛЕНИЕ МИКРОБИОЛОГИЯ ИНФЕКЦИОННАЯ ПАТОЛОГИЯ


- Получение новых данных, которые ранее, при использовании ПКА, отсутствовали
- Изучение антигенов возбудителей бактериальных, вирусных паразитарных, микотических и других инфекций
- Классификация видов микроорганизмов
- Выявление слабо выраженных антигенных различий между вариантами одного и того же штамма микроорганизма
- Внутривидовое типирование
- Изучение структуры антигенов и их локализации в микробной клетке
- Изучение "дрейфа" антигенов у вирусов, выявление отличий у циркулирующих "уличных" и вакцинных вариантов вирусов (поликлональные антитела не пригодны)
- Стадиеспецифические антигены паразитов (малярия)

- Получение диагностических препаратов нового поколения на основе моноклональных антител для МФА, ТИФМ, РИА
- Эпиднадзор за возбудителями опасных инфекционных заболеваний, в том числе природноочаговых инфекций
- Исследование проб клинического материала, объектов внешней среды
- Индикация и идентификация возбудителей особо опасных инфекций в различных объектах исследования

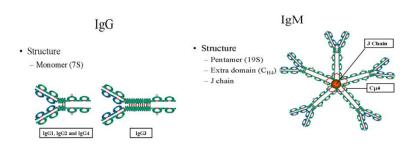
Изучение структуры антигенов и их локализации в микробной клетке

Ультратонкий срез клеток *B. pseudomallei VPA*, инкубированных с МКА против АГ 6. Для выявления иммунного комплекса использован антимышиный ИПКонъюгат.
Увеличение *80000


Ультратонкий срез клеток *B. pseudomallei 114*, инкубированных с МКА против АГ 8. Для выявления иммунного комплекса использован антимышиный ИПКонъюгат.
Увеличение *60000

ИСПОЛЬЗОВАНИЕ МКА В СЕРОЛОГИЧЕСКИХ МЕТОДАХ ТИФМ, РИА, МФА, ИММУНОБЛОТТИНГ, МИКРОЦИТОФЛУОРОМЕТРИЯ ДЛЯ ОБНАРУЖЕНИЯ И ИДЕНТИФИКАЦИИ МИКРООРГАНИЗМОВ:

- вирусов
- бактерий
- риккетсий
- микоплазм
- легионелл
- лептоспир
- хламидий
- возбудителей микозов
- простейших
- паразитов
- бактериальных токсинов и микотоксинов

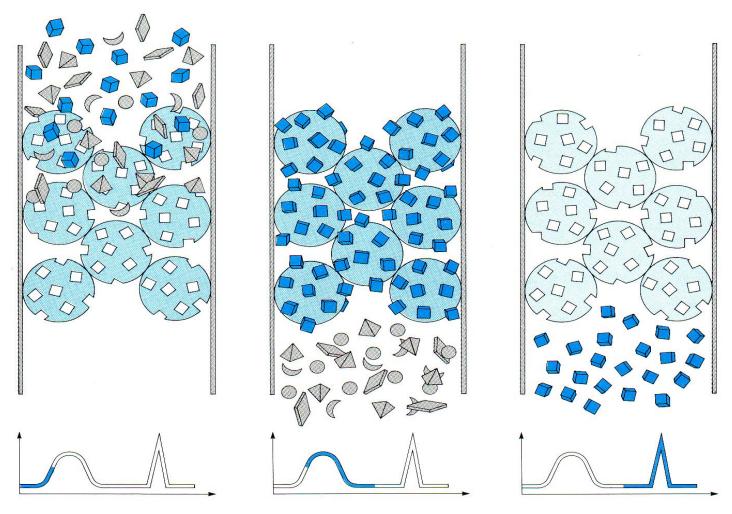

Использование МКА в серологических методах:

- повышает специфичность анализа
- устраняет фоновые (перекрестные) реакции
- увеличивает вероятность обнаружения микроорганизмов в пробах внешней среды и образцах клинического материала
- повышает достоверность и воспроизводимость анализа
- требуются чрезвычайно малые количества МКА (нг)

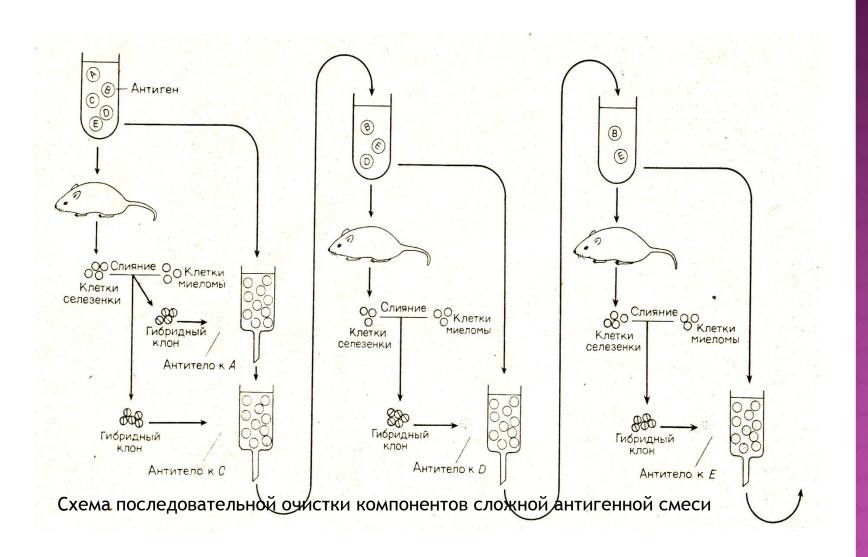
ПРОИЗВОДСТВО МОНОКЛОНАЛЬНЫХ ДИАГНОСТИЧЕСКИХ ПРЕПАРАТОВ И ТЕСТ-СИСТЕМ

- США и Японии производят диагностические препараты на основе МКА на сумму более 2 млрд долларов/год
- К 2000 году в США доля препаратов, приготовленных на основе МКА, составила 90% всех иммунодиагностических препаратов, к 2009 году более 95 %
- Стоимость препаратов моноклональных антител составляет 200—500 долларов за 1 мг.

ИСПОЛЬЗОВАНИЯ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ ДЛЯ ВЫДЕЛЕНИЯ И ОЧИСТКИ АНТИГЕНОВ ИЗ СЛОЖНЫХ СМЕСЕЙ


МЕТОД

 Аффинная очистка антигенов на колонках с иммуносорбентом, приготовленным с использованием МКА в качестве лиганда


- Применение метода:
- очистка ферментов, гормонов, токсинов, антигенов микроорганизмов, биополимеров с различными м.м.
- выделение биологически активных веществ из сложных смесей
- идентификация ранее неизвестных молекул в комплексных смесях
- изучение структуры и функции различных антигенов, вплоть до исследования последовательностей в молекулах НК
- изучение поверхностных антигенов бактерий и выделение их в чистом виде

АФФИННАЯ ОЧИСТКА АНТИГЕНОВ ПОЛУЧЕНИЕ МОНОКЛОНАЛЬНЫХ ИММУНОСОРБЕНТОВ

Схема. Этапы проведения иммуносорбции

КАСКАДНАЯ ОЧИСТКА АНТИГЕНОВ

ОНКОЛОГИЯ ДИАГНОСТИКА И ЛЕЧЕНИЕ

Иммунодиагностика опухолей

- Обнаружение и идентификация опухолевых антигенов, в том числе стадиеспецифических антигенов
- Иммуногистохимическая диагностика опухолей и метастазов, иммунолокализация опухоли
- Радиоиммуносканирование опухоли и метастазов с помощью конъюгатов МКА против опухолеспецифических антигенов с радиоактивными изотопами

Лечение

- Терапия злокачественных заболеваний (разрушение злокачественного новообразования, регресс опухоли, предупреждение лимфо- и гематогенного метастазирования как следствие введения иммунотоксина, иммуноцитостатика или иммуносупрессора)
- Экстракорпоральная очистка крови
- Противоопухолевая терапия

МОНОКЛОНАЛЬНЫЕ АНТИТЕЛА В ТЕРАПИИ ОПУХОЛЕЙ

- > применение препаратов МКА in vivo в чистом виде
- применения радиоактивных иммуноглобулинов с неоперабельным первичным раком
- соединение МКА с цитотоксическими веществами (иммунотоксины)

иммунотоксины

Способ применения моноклональных антител с цитотоксическими веществами

Для конъюгирования с МКА используют:

- токсины биологического происхождения (рицин, дифтерийный токсин, α-аманитин)
- □ радиоактивные изотопы
- липосомы, с заключенными в них лекарственными веществами

ПРИМЕНЕНИЕ MKA EX VIVO В ОНКОЛОГИЧЕСКОЙ ПРАКТИКЕ

- При онкологических заболеваниях кроветворной системы костный мозг или периферическую кровь подвергают экстракорпоральной очистке на колонках с моноклональными иммуносорбентами
- В настоящее время предпринимаются успешные попытки использовать МКА против Т-лимфоцитов, а также лейкозных клеток
- Для обработки клинического материала ех vivo используют мышиные МКА, а затем их вновь вводят пациентам

ПРИМЕНЕНИЕ МКА ДЛЯ ИЗГОТОВЛЕНИЯ ПРОТЕКТИВНЫХ И ВАКЦИННЫХ ПРЕПАРАТОВ

- Терапевтические (протективные) иммуноглобулины
- жнаиболее дорогие лекарственные средства
- реагенты недолговечны
- **жимеют небольшие рынки сбыта**

- Введение МКА для специфической защиты против инфекции
- Развитие немедленного иммунитета у больного (пассивная иммунизация)
- Пассивная иммунизация человеческими МКА (10 МКА)
- Получены протективные человеческие МКА к:
- ботулиническим токсинам АВСДЕ
- стафилококковому токсину В
- столбнячному токсину
- возбудителям вирусных энцефалитов
- Listeria monocytogenes
- Candida albicans
- Micobacteria tuberculosis
- P.aeruginosa 5 серотипа

KOMMEPYECKIE ПРЕПАРАТЫ

Компания PharmAthene (США) осуществляет выпуск коммерческого препарата Valortim, представляющего собой человеческие сибиреязвенные МКА для биозациты населения. Кроме того, сотрудниками компании Medarex (США) получены полностью охарактеризованные человеческие МКА MDX-1303 к протективному антигену возбудителя сибирской язвы, находящиеся в стадии доклинических испытаний с целью последующего использования для защиты от этого особо опасного микроорганизма.

В настояшее время обе вышеназванные компании, специализирующиеся на разработке и выпуске средств биозащиты, объявили о соглашении, предусматривающем дальнейшее совершенствование производства полностью охарактеризованных человеческих МКА MDX-1303.