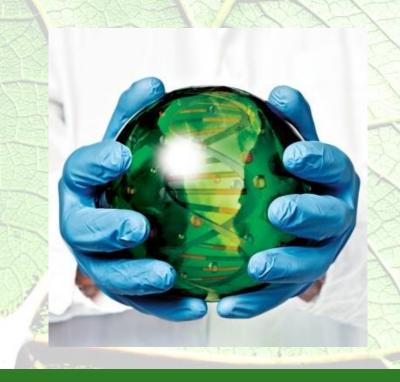


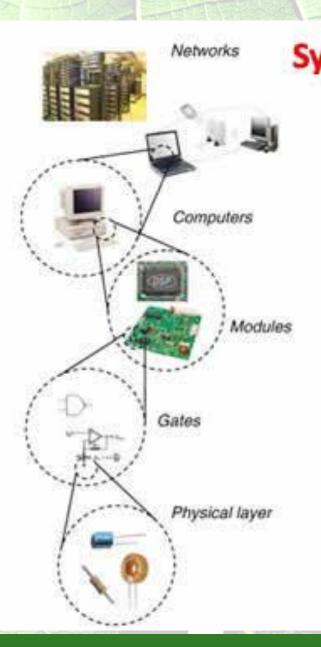
Синтетическая биология. Основные технологии и области приложения. Перспективы синтетической биологии. Основные риски и угрозы

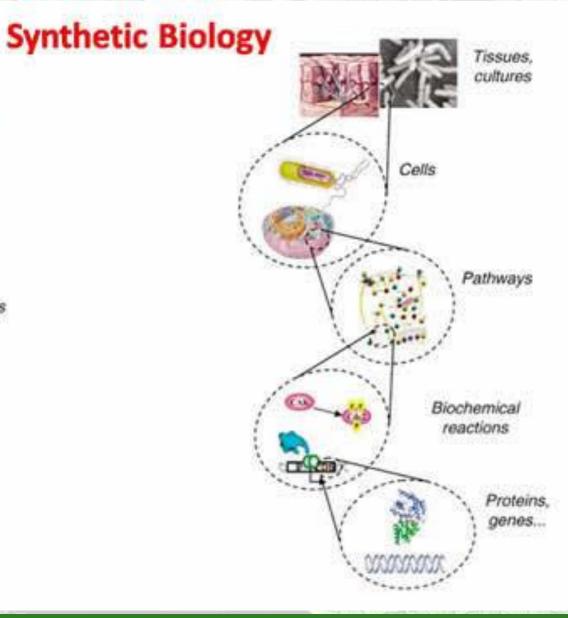

СЛОВАРЬ

Ксенобиология – раздел синтетической биологии, изучающий создание и управление биологическими устройствами и системами

КсНК (XNA) – ксенонуклеиновые кислоты

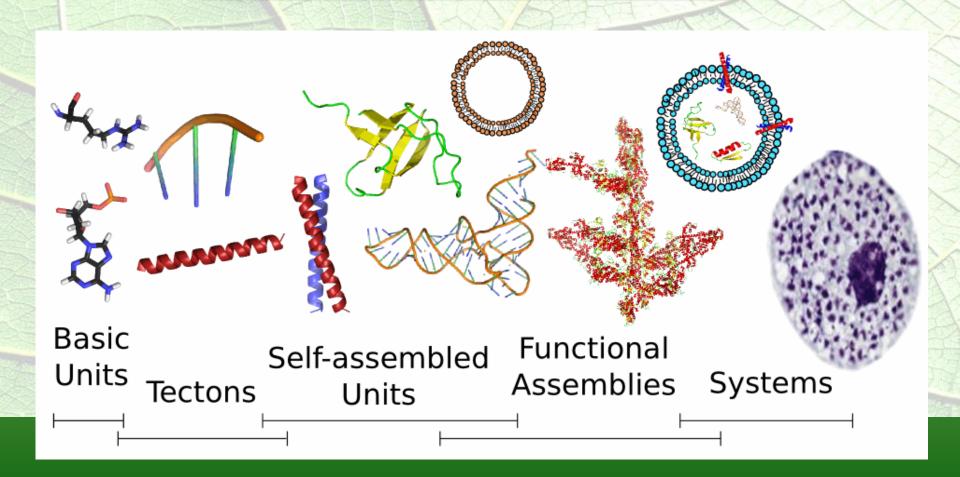

Ксенозимы (XNAzymes) – молекулы способные специфически катализировать некоторые реакции (биохимические)


НКАА – неканонические аминокислоты



СИНТЕТИЧЕСКАЯ БИОЛОГИЯ. ТЕРМИН.

это новая область биологии (направление генной инженерии), изучающее возможности проектирования и построения новых (несуществующих в природе) биологических функций и систем



СИНТЕТИЧЕСКАЯ БИОЛОГИЯ. ПРЕДМЕТ.

разработка методов и подходов для конструирования живого по принципу «снизу вверх»

разработка методов количественного анализа отдельной клетки как многопараметрической системы

(несмотря на все успехи, до сих пор невозможно с достаточной достоверностью узнать, что же происходит внутри клетки)

стандартизация языка описания клетки, отдельных биологических компонент и целых метаболических путей

совершенствование технологии секвенирования и синтеза нуклеиновых кислот ДНК и РНК

автоматизация проектирования биологических систем

СИНТЕТИЧЕСКАЯ БИОЛОГИЯ. ИСТОРИЯ ТЕРМИНА.

Barbara Hobom

1980 г.

первое употребление термина **Барбарой Хобом** при описании бактерии, которая была генетически модифицирована с помощью технологии рекомбинантных ДНК

2000 г.

повторное применение термина Эриком Кулом при описании синтеза искусственных органических молекул

Eric Kool

ЭТАПЫ РАЗВИТИЯ СИНТЕТИЧЕСКОЙ БИОЛОГИИ. ЧТО СДЕЛАНО.

• СИНТЕЗ ИСКУСТВЕННЫХ НУКЛЕОТИДОВ

• СИНТЕЗ ИСКУССТВЕННЫХ НУКЛЕИНОВЫХ КИСЛОТ

• СИНТЕЗ ИСКУССТВЕННОГО ВИРУСА

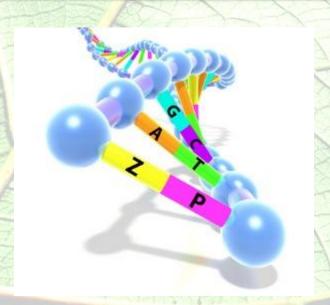
• СОЗДАНИЕ ИСКУССТВЕННОЙ КЛЕТКИ

• СИНТЕЗ ИСКУССТВЕННЫХ БЕЛКОВ

КСЕНОБИОЛОГИЯ

раздел синтетической биологии целью которого является разработка форм жизни с иной биохимией или иным генетическим кодом

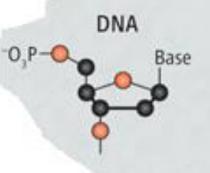
- исследование аналогов нуклеиновых кислот (КсНК) в качестве носителей информации
- исследование расширенного генетического кода

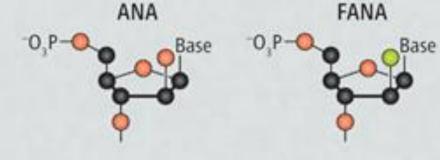

• включение не-протеиногенных аминокислот в белки

ЭКСПЕРИМЕНТЫ ПО СОЗДАНИЮ ИСКУССТВЕННОЙ ДНК

Steven Benner

1989 г. Стивен Беннер и сотруд. синтезировали ДНК, содержащую два «искусственных нуклеотида» (Р, Z) помимо известных (А, Г, Ц, Т,), используемых всеми живыми организмами Земли




КсНК. Молекулярные монстры?

Нуклеиновые кислоты с модифицированным каркасом

- треозонуклеиновая кислота (ТНК) вместо рибозы или дезоксирибозы треоза (четырех атомный углевод)
 - арабинозонуклеиновая кислота (АНК) ...пятиуглеродная арабиноза
 - гексозонуклеиновая кислота (ГНК) ... ангидрогекситол

получено 6 КсНК

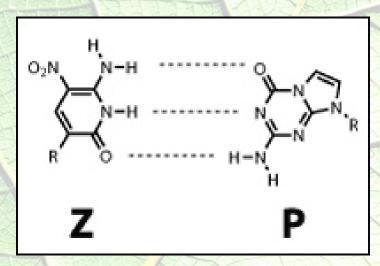
Молекулы различаются строением сахара, входящего в состав сахаро-фосфатного «скелета». У ДНК это дезоксирибоза, у РНК – рибоза, у КНК – разные другие сахара: арабиноза (ANA), 2'-флюороарабиноза (FANA), треоза (TNA), особая «запертая» форма рибозы


TNA LNA

O₃P

Base

O₃P


Base

(LNA), циклогексен (CeNA), ангидрогекситол (HNA)

Base — азотистое основание. Черные шарики — атомы углерода, красные — кислорода, зеленые — фтора. Изображение из статьи G. F. Joyce в Science

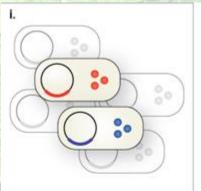
РАСШИРЕНИЕ ГЕНЕТИЧЕСКОГО АЛФАВИТА. НУКЛЕОТИДЫ Р и Z

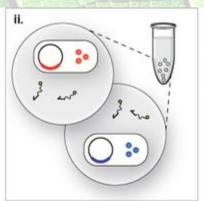
Нуклеотид Z -

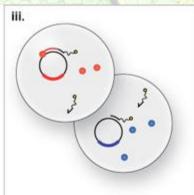
пуриновый нуклеотид (6-амино-5-нитро3-(I'-Pd-2'-деоксирибофуранозил)-2(1H)-пиридон)

Нуклеотид Р -

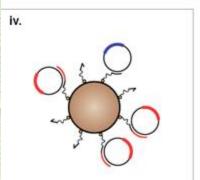
пиримидиновый нуклеотид (2-амино-8-(1-бета-D-2'-деоксирибофуранозил)имидазо[1, 2-а]-1,3,5-триазин-4(8H)))

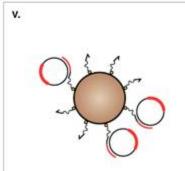

РАСШИРЕНИЕ ГЕНЕТИЧЕСКОГО АЛФАВИТА. 4 + 8 НОВЫХ НУКЛЕОТИДОВ = 12

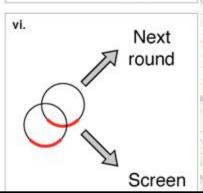

12-буквенный алфавит С.Беннера способен записывать генетическую информацию:


4 + 8 новых синтетических нуклеотидов (Z, P, V, J, Iso-C, Iso-G, X и K)

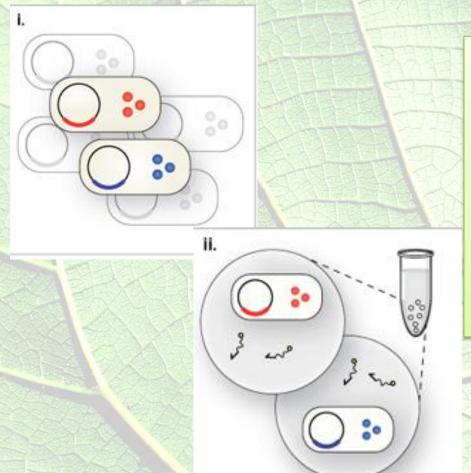
Ксенозимы.


Ферменты полимеразы, осуществляющие копирование ДНК – КсНК и наоборот

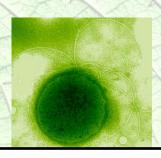




Стратегия искусственного отбора полимераз, способных синтезировать КсНК на матрице ДНК

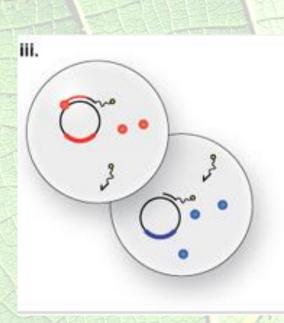

Большие круги с красными и синими фрагментами – плазмиды с разными вариантами гена полимеразы.

Маленькие красные и синие шарики – полимеразы.


Крошечные не закрашенные кружки с загогулинами –праймеры.

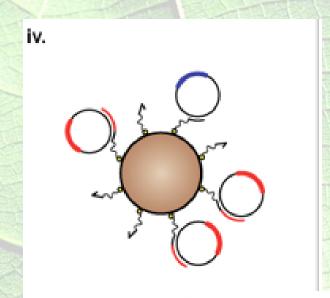
Большие коричневые круги – шарики, покрытые стрептавидином, к которым присоединяется биотин, прикрепленный к праймеру.

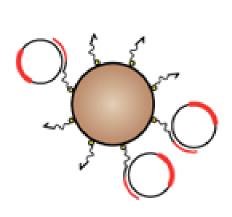
Стратегия искусственного отбора полимераз



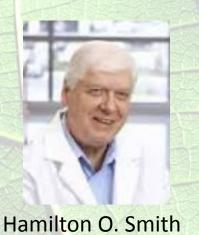
Бактерий Е. coli, в которых были вставлены плазмиды с мутантными версиями гена полимеразы ТдоТ, помещали в водно-жировую эмульсию, так что каждый вариант полимеразы оказывался в отдельной капельке воды — в той же самой, где находился и его ген («компартментализация»)

TgoT – ДНК-полимераза термофильной архебактерии *Thermococcus gorgonarius*

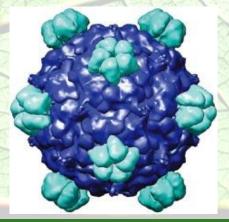

Стратегия искусственного отбора полимераз


В воду добавляли «ксенонуклеотиды» и праймеры (меченные биотином), комплементарные участку той же плазмиды, в которой располагался ген полимеразы.

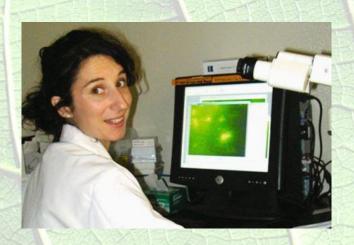
Праймер присоединяется к комплементарному участку ДНК, а полимераза пытается его достроить, используя ксенонуклеотиды в качестве мономеров для синтеза КНК. Если ей это удается, праймер оказывается прикреплен к плазмидной ДНК


Стратегия искусственного отбора полимераз

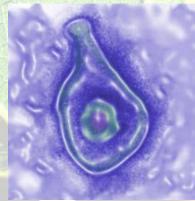
Биотин, приделанный к праймеру, присоединяется к стрептавидину. В результате промывки на шариках остаются те плазмиды, чей ген полимеразы сумел обеспечить синтез КсНК и, как следствие, более прочное соединение праймера с плазмидой.


ЭКСПЕРИМЕНТЫ ПО СОЗДАНИЮ ИСКУССТВЕННОГО ГЕНОМА. ШАГ 1.

2003 г.


группа К. Вентера за 14 дней синтезировали искусственный геном (ДНК) бактериофага фХ174, состоящий из 5386 п.н.

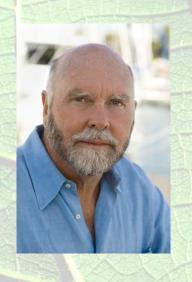
Бактериофаг фХ174 содержит всего 11 генов.


ЭКСПЕРИМЕНТЫ ПО СОЗДАНИЮ ИСКУССТВЕННОГО ОРГАНИЗМА. ШАГ 2.

Carole Lartigue

2007 г.

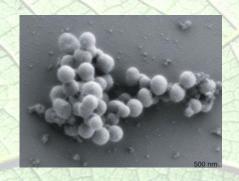
институт Крейга Вентера закончил работу по созданию искусственного генома Mycoplasma laboratorium на базе структуры бактерии Mycoplasma genitalium


Синтетическая хромосома M.genitalium JCVI-1.0 имеет молекулярную массу 360,110 kDa. Напечатанная на бумаге шрифтом в 10 пунктов последовательность синтетической хромосомы занимает 147 страниц.

МЕТОДЫ, ПРИМЕНЯЕМЫЕ ПРИ СОЗДАНИИ ИСКУССТВЕННОГО ГЕНОМА

- химический синтез фрагментов ДНК (модулей) маркирование синтетического генома
- •сборки модулей в 25 фрагментов ДНК по 24 т.п.н. (E. coli)
- •комбинирование полученных фрагментов в 8 блоков по 72 т.п.н. (E. coli)
 - •объединение в 4 фрагмента по 144 т.п.н. (E. coli)

Объединение в кольцевую ДНК (∂рожжи)


ЭКСПЕРИМЕНТЫ ПО СОЗДАНИЮ ИСКУССТВЕННОГО ОРГАНИЗМА. ШАГ 3.

2010 г.

группа Крейга Вентера создала искусственную бактерию. Участниками эксперимента стали бактерии Mycoplasma mycoides (искусственный геном) и Mycoplasma capricolum.

«Мы поместили карту ДНК в компьютерную программу, взяли четыре пузырька химикатов и построили генную цепочку из миллиона с лишним элементов. Искусственную молекулу с генокодом мы пересадили в живую бактерию, и она превратилась в новый вид» (К. Вентер)

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ СИНТЕТИЧЕСКИХ БАКТЕРИЙ

6 октября 2009 года, Крейг Вентер получает Национальную научную медаль

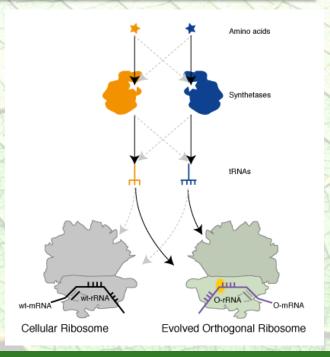
Многофункциональная база на Марсе (изображение NASA).

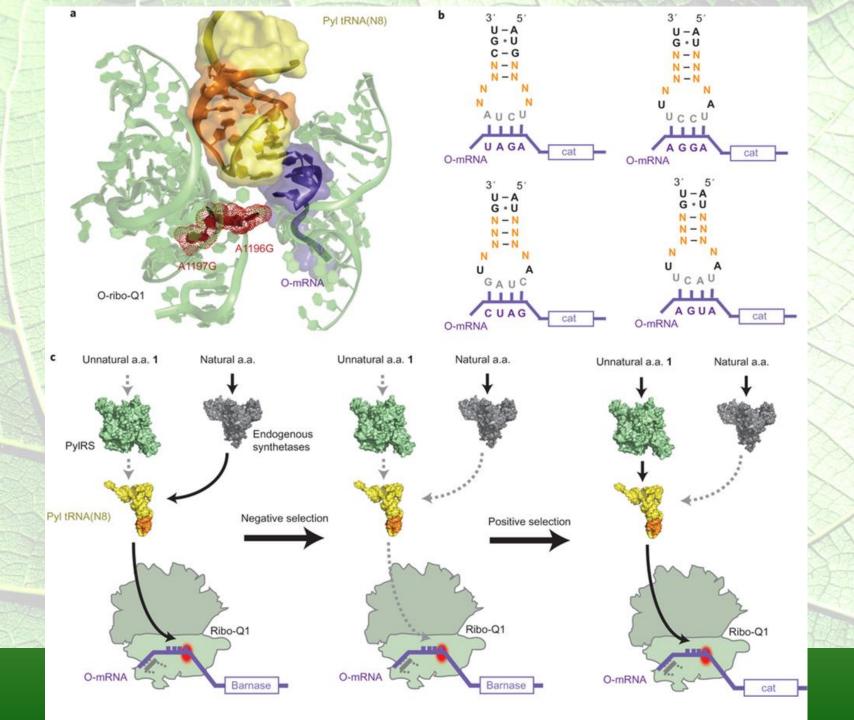
ЭКСПЕРИМЕНТЫ ПО СИНТЕЗУ ИСКУССТВЕННОГО БЕЛКА.

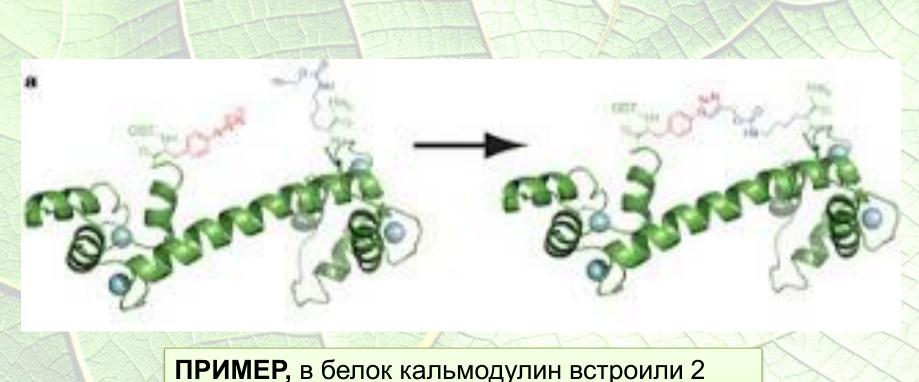
David Baker

2004 г.

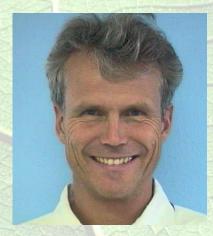
Дэвид Бейкер и сотруд. синтезировали первый рукотворный белок Тор7.


ЭКСПЕРИМЕНТЫ ДЖЕЙСОНА ЧИНА

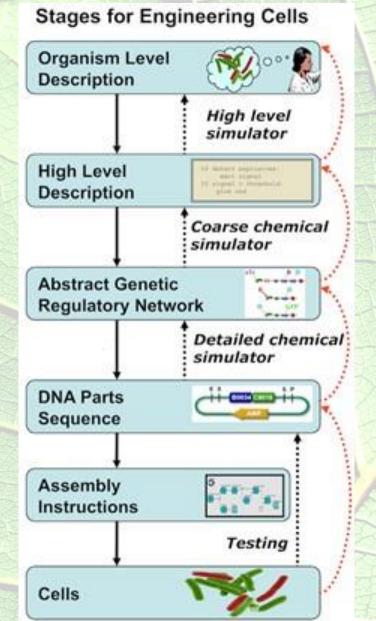


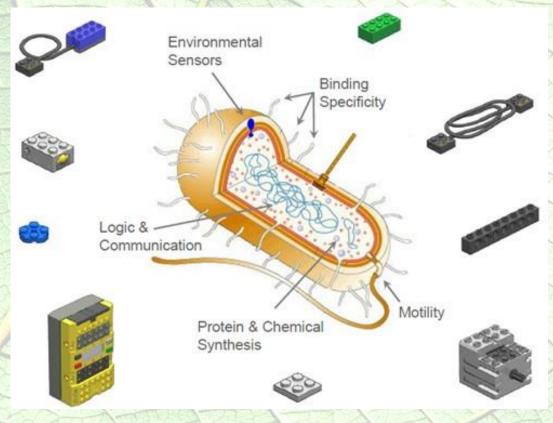

Jason Chin

Джейсон Чин и сотруд. составили кодоны из 4 нуклеотидов и научили Е. coli синтезировать белки по измененным 4-буквенным кодонам. Получилось создать дополнительно 256 комбинаций нуклеотидов, не соответствующих 22 природным аминокислотам.

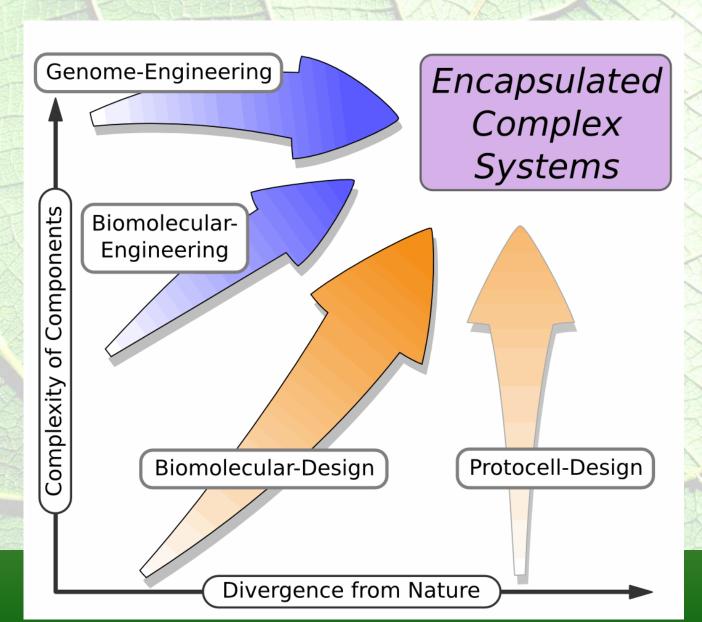


ПРИМЕР, в белок кальмодулин встроили 2 новых аминокислот, которые в пространстве дополнительно соединились друг с другом *(образовали циклический кросс-линк).* Это укрепило трехмерную пространственную структуру белка.


ЭКСПЕРИМЕНТЫ ПО СОЗДАНИЮ ИСКУССТВЕННОЙ КЛЕТКИ

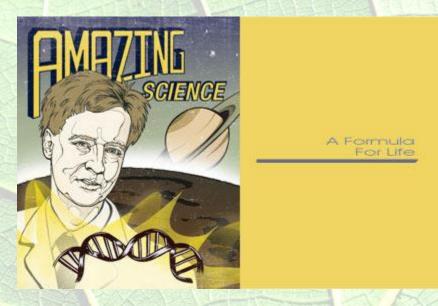


Steen Rasmussen


Стин Расмуссен с коллегами из американской Национальной лаборатории в Лос-Аламосе намерен создать принципиально новую форму жизни - протоклетку

Структура ПНК – полиамидный скелет молекулы (у РНК и ДНК он состоит из остатков фосфорной кислоты) присоединён к азотистым основаниям (base).

СИНТЕТИЧЕСКАЯ БИОЛОГИЯ. ПЕРСПЕКТИВЫ.


СИНТЕТИЧЕСКАЯ БИОЛОГИЯ. ФАНТАСТИЧЕСКИЕ ПЕРСПЕКТИВЫ.

Рэй Брэдбери

Американский писатель Рэй Брэдбери как-то сказал, что история человечества не что иное, как научная фантастика: превращение мечты в реальность

ПЕРСПЕКТИВЫ НАУКИ. ИЩЕМ ЖИЗНЬ В КОСМОСЕ.

Steven Benner is a science fiction writer's dream

Миллиарды лет эволюции породили великое разнообразие организмов. Но ещё есть масса направлений для развития. А ждать ещё миллиард лет до появления чего-то нужного – учёные не хотят. Новое направление генной инженерии «синтетическая биология» ставит перед собой грандиозную цель: СОЗДАНИЕ ПРИНЦИПИАЛЬНО ИНОЙ ЖИЗНИ

