
Биохимические маркеры развития и метаболизма костной ткани

Диагностика остеопороза

Около 75 миллионов человек в мире страдают остеопорозом. Это заболевание характеризуется общей прогрессирующей потерей костной массы и нарушением микроархитектоники, следствием чего является хрупкость костей, ведущая к увеличению частоты переломов.

Предполагают, что ежегодное число переломов шейки бедра в мире возрастет с 1,7 млн. в 1990 г. до 6,3 млн. к 2050 году.

У женщин риск переломов от остеопороза в течение жизни составляет 40-50%, у мужчин – 13-22%.

Первый этап диагностики ОП – это выявление факторов риска на основе анализа данных пациента.

факторы риска (у лиц, которые должны быть обследованы):

- Дефицит эстрогенов:
 - ранняя менопауза (менее 45 лет)
 - аменорея более 1 года
 - первичный или вторичный гипогонадизм у обоих полов, в том числе у всех женщин 65 лет и старше, постменопаузальных женщин до 65 лет при наличии дополнительного фактора риска
- Прием кортикостероидов в течение 3 мес. и более
- Материнский семейный анамнез перелома бедра
- Низкий индекс массы тела (<19 кг/м2)
- Хронические заболевания: нервная анорексия, синдром мальабсорбции, печени, воспалительные кишечника, первичный гиперпаратиреоидизм, период после трансплантации, почечная недостаточность, гипертиреоз, длительная иммобилизация, синдром Кушинга
- Предшествующие переломы, особенно бедра, позвоночника и запястья
- Потеря веса, грудной кифоз

Определение минеральной плотности кости (BMD)

является общепринятым стандартом для диагностирования ОП.

BMD ниже, чем 2,5 стандартных отклонения от среднего значения для женщин, указывает на ОП.

Рентгенологические методы -

можно обнаружить наличие остеопении только при потере более 30% костной массы

Денситометрия -

количественное определение показателей костной плотности в граммах на 1 см² площади

но она не подходит для немедленной оценки адекватности лечения, т.к. улавливает изменения в плотности костной ткани только через год и более.

Костная ультрасонометрия (КУС)

– определяет скорость прохождения звука через кость и единицу механической реакции кости. Это скрининговые исследования

Рутинные клинические лабораторные показатели

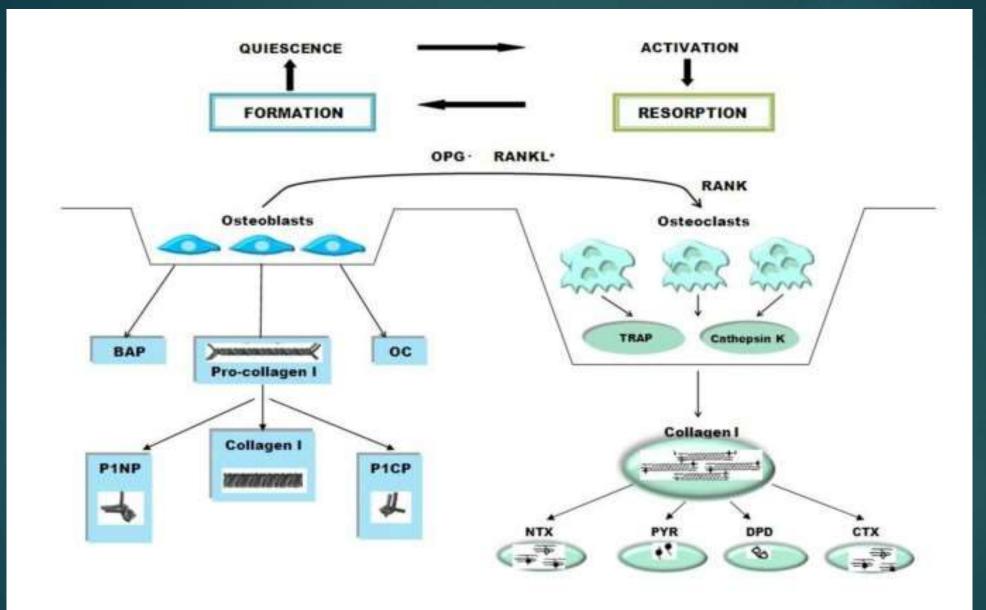
- чаще всего остаются в норме при всех формах ОП. Наибольшее значение в дифференциальной диагностике имеет оценка паратиреоидного гормона (ПТГ), половых стероидных и гонадотропных гормонов, витамина D.

Т.о. динамическое определение биохимических маркеров костного обмена уже через 3-6 мес. После начала лечения антирезорбтивными препаратами может иметь очень большое значение для оценки эффективности проводимой терапии.

Биохимические маркеры метаболизма костной ткани

Масса кости зависит от баланса между резорбцией и образованием кости в данный период времени в зависимости от количества активированных участков ремоделирования.

В норме количество новообразованной костной ткани эквивалентно количеству разрушенной.


По оценкам, ремоделированию подвергается от 2 до 10% костной массы в год.

При ускорении ремоделирования характерно, что степень усиления формирования всегда меньше, чем степень усиления резорбции.

Определение биохимических маркеров метаболизма костной ткани позволяет:

- > оценить состояние кости,
- установить скорость обменных процессов в костной ткани и темпы спонтанной потери костной массы,
- > проводить мониторинг лечения ОП антирезорбционными препаратами,
- прогнозировать риск переломов при постменопаузальном ОП.

BAP: bone alkaline phosphatase; CTX: carboxy-terminal cross-linked telopeptides of type 1 collagen; DPD: deoxypyridinoline; NTX: amino-terminal cross-linked telopeptide of type 1 collagen; OPG: osteoprotegerin; OC: osteopalcin; PICP: procollagen type 1 carboxy-terminal propeptide; PINP: procollagen type 1 amino-terminal propeptide; PYD: pyridinoline; RANK: receptor activator of nuclear factor kappa B; RANKL: receptor activator of nuclear factor kappa B ligand; TRAP: tartrate resistant acid phosphatase.

Сыворотка:

остеокальцин, общая и специфическая костная щелочная фосфатаза, карбокси- и аминотерминальные пропептиды проколлагена I типа

Плазма:

устойчивая к тартрату кислая фосфатаза, пиридинолин и дезоксипиридинолин, продукты деградации коллагена I типа – N- и C-телопептиды Моча:

пиридинолин и дезоксипиридинолин, продукты деградации коллагена I типа – N- и C-телопептиды, кальций и гидроксипролин натощак, гликозиды гидроксилизина; спиралевидные участки α-цепи коллагена I типа

Маркеры резорбции кости

Продукты деградации коллагена I типа

- С-телопептиды (S-CTX, CrossLapsTM)
- β CrossLapsTM и α CrossLapsTM

Структура коллагена I типа и локализация CrossLaps эпитопа

Отщепление С-телопептидов происходит на самом начальном этапе деградации коллагена, поэтому метаболиты коллагена не влияют на коцентрацию С-телопептидов.

Продукты деградации коллагена можно определять как в моче, так и в сыворотке с использованием ИФА тест-систем CrossLapsTM.

Измерение β CrossLaps в сыворотке крови или моче позволяет оценить темпы деградации относительно старой кости, а α CrossLaps – темпы деградации недавно сформированной кости.

Данный маркер костной резорбции позволяет быстро оценить эффективность всех видов терапии ОП уже через 3 месяца после начала лечения.

Увеличение концентрации CrossLaps на 2 SD от нормы ассоциируется с 2-кратным увеличением риска переломов шейки бедра.

Пиридинолин (ПИД) и дезоксипиридинолин (ДПИД)

Как у женщин, так и у мужчин экскреция ПИД и ДПИД увеличивается при первичном гиперпаратиреозе (примерно в 3 раза), гипертиреозе (примерно в 5 раз), болезни Педжета (в 12 раз). Менее значимо, но тем не менее достоверно, экскреция ДПИД увеличивается при ОП, остеоартритах и ревматоидном артрите.

Экскреция во всех случаях снижается при успешном лечении.

Тартрат-резистентная (TRACP)

кислая ф

фосфатаза

Исследование этого маркера особенно полезно при мониторинге лечения препаратами, подавляющими резорбцию костной ткани (бисфосфонатами, эстрогенами и другими), ОП, болезни Педжета и онкологических заболеваний с метастазами в кость.

Клинические состояния, связанные с изменением в сыворотке активности тартратрезистентной кислой Фосфатазы

Состояния	Степень изменения
	Увеличение:
Метастазы опухоли в кость	+++
Остеомаляция	+++
Болезнь Педжета	++
Первичный гиперпаратиреоз	++
Гипертиреоз	+
Множественная миелома	+
Болезнь Кушинга	++
Волосатоклеточный	
Лейкоз	++
ОП	+
	Снижение
Гипотиреоз	-

Маркеры формирования кости

Биохимические маркеры формирования кости являются продуктами остеобластов. Они измеряются в сыворотке крови.

Остеокальцин

Измерение сывороточного остеокальцина позволяет:

- □ определить риск развития ОП у жен
- проводить мониторинг костного мет во время менопаузы и после нее,
- во время гормональной заместител терапии и терапии антагонистами гоно рилизинг гормона (ГРГ);
- помогает в диагностике пациентов с дефицитом гормона роста, гипо- и гипертироидизмом, хроническими заболеваниями почек.
- помогает в диагностике рахита у детей раннего возраста.

Рахит сопровождается снижением в крови содержания остеокальцина, степень снижения его концентрации зависит от выраженности рахитического процесса и наиболее выражена при рахите II степени.

Содержание остеокальцина в крови детей, больных рахитом, находится в обратной зависимости от концентрации ПТГ и в прямой – с уровнем общего и ионизированного кальция и КТ.

Остеокальцин является диагностическим критерием гиперкортицизма (болезнь и синдром Иценко-Кушинга) и позволяет мониторировать пациентов, получающих преднизолон.

При этих состояниях содержание остеокальцина в крови значительно снижено.

Костный изофермент щелочной фосфатазы (ВАР)

Значительное увеличение активности ВАР в сыворотке крови наблюдается при повышенной деятельности остеобластов:

рост костей (у детей активность выше, чем у взрослых),
последний триместр беременности,
возобновление движений после длительного постельного режима,
переломы,
деформирующий остит,
болезнь Педжета,
рахит,
гиперпаратиреоз.

Карбокситерминальные пропептиды проколлагена I типа (CICP)

по уровню пропептидов можно судить о способности остеобластов синтезировать коллаген I типа.

Повышенные концентрации СІСР выявлены при заболеваниях, связанных с высоким уровнем ремоделирования кости, включая

- √болезнь Педжета,
- √гипертиреоз,
- ✓ первичный гиперпаратиреоз
- ✓ Нефрогенную остеодистрофию.

В некоторых случаях повышенные уровни СІСР также выявляются при ранней менопаузе. Низкая концентрация СІСР обнаружена у детей с дефицитом гормона роста.

Таким образом, по соотношению уровней маркеров резорбции и синтеза представляется возможным судить о скорости костных потерь, предсказывать риск перелома кости, а также выбирать наиболее адекватную терапию: при высокой скорости костного оборота предпочтительны препараты, подавляющие резорбцию, а при низкой – препараты, стимулирующие формирование кости. По изменениям маркеров костной ткани в сыворотке и моче удается оценить эффективность лечения.

Регуляция остеокластогенеза sRANKL и остеопротегерин (OPG)

sRANKL и OPG играют ключевую роль в молекулярной регуляции остеокластогенеза.

RANKL продуцируется остеобластами и активированными Т-лимфоцитами. RANKL является основным стимулирующим фактором в образовании зрелых остеокластов. Поэтому увеличе-

ние его экспрессии приводит к резорбции костной ткани и, следовательно, к потере костной массы.

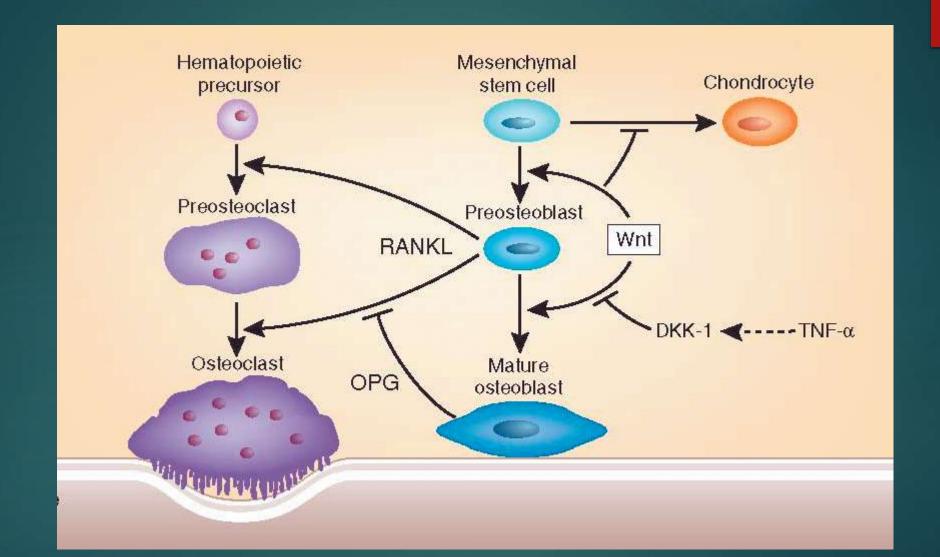
OPG ингибирует связывание RANK и RANK-лиганда, тем самым угнетая мобилизацию, пролиферацию и активацию остеокластов.

Дисбаланс системы RANKL/RANK/OPG приводит к серьезным нарушениям ремоделирования кости, которое лежит в основе разрушения кости при постменопаузальном ОП, болезни Педжета, костных потерях при метастазах рака и ревматоидном артрите.

Остеобласты/Стромальные клетки

Возможные показания к исследованию srankl и OPG:

- >Постменопаузальный и сенильный ОП
- >Глюкокортикоид-индуцированный ОП
- Заболевания с локальным ростом резорбтивной активности
- > Мониторинг терапии остеопротегерином
- **>**Артриты
- Онкозаболевания


Dickkopf-1(Dkk-1)

Dkk-1 участвует в регуляции костного метаболизма, т.к. останавливает дифференцировку и пролиферацию остеобластов.

Экспрессия Dkk-1 повышает миграционную активность клеток, в связи с этим он может играть важную роль в прогрессии опухоли.

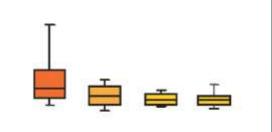
Возможные области применения:

- ✓ остеоартриты
- VO∏
- ✓ рак желудка
- ✓ множественная миелома
- √метастазы в кость

Гомоцистеин

Установлена связь риска развития сенильного ОП с повышенным уровнем ГЦ.

Сообщалось о повышении риска переломов в 2-4 раза у лиц с высоким ГЦ по сравнению с лицами с низким ГЦ. Этот риск не зависел от минеральной плотности кости и от других факторов риска.


У детей с гомоцистинурией, при которой высокий уровень ГЦ обусловлен генетическими нарушениями, известны не только тяжелый атеросклероз и сердечнососудистые заболевания, но и рано развивающийся генерализованный ОП.

Злокачественные заболевания костной ткани

При обширном поражении костей опухолью, чаще всего при метастазах РМЖ, миеломной болезни и лимфоме, возникает остеолитическая гиперкальциемия, при которой продукты жизнедеятельности опухолевых клеток, например цитокины, стимулируют локальную резорбцию кости остеокластами.

При метастазах злокачественных опухолей в кости определяются следующие маркеры: ВАР, TRACP,

Dkk. Наблюдается повышение BAP и снижение остеокальцина.

Биохимические маркеры остеоартрита

Остеоартрит (OA) – системное заболевание суставов и околосуставных тканей. В основе заболевания лежит изменение и разрушение суставного хряща с последующим разрастанием подлежащей костной ткани.

CTX-II являются продуктами деградации коллагена II типа Определение позволяет: прогнозировать

развитие заболевания, оценить степень повреждения суставного хряща, проводить мониторинг лечения.

СОМР – это кальций-связывающий протеин. СОМР связывает коллагены I, II и IX. Кроме того, СОМР может выполнять функции хранения и доставки гидрофобных молекул клеточной сигнализации. СОМР - маркер воспалительных заболеваний

суставов, таких как остео- и ревматоидный артриты.

Хрящевой гликопротеин-39 (YKL-40) -

гликопротеин с молекулярной массой 40 кДа. Он продуцируется хондроцитами . Маркер активности деструкции сустава при ревматоидном артрите и остеоартрите, фиброзе печени при алкогольном циррозе и в прогнозе выживаемости при мониторинге рецидивирующего РМЖ или колоректального рака.

Аггрекан

протеогликан хрящевого матрикса. Структура этой молекулы идеально противодействует нагрузке на сустав.

По уровню аггрекана возможно судить об эффектах цитокинов, факторов роста, хондропротективных веществ на гомеостаз хряща.

Катепсин К

- основной протеолитический фермент остеокластов.
- Катепсин К человека имеет высокую степень гомологии с белком у других видов (мышь 86%, крыса 88%, свинья 97%, кро-лик 96%), что дает возможность изучать следующие болезни и на животных моделях:
- ✓Первичный и вторичный (тиреотоксикоз, первичный гиперпаратиреоидизм, множественная миелома, РМЖ, рак простаты) ОП
- ✓ Воспалительные заболевания с вовлечением многих участков скелета (полиартрит, ревматоидный артрит, болезнь Педжета)
- ✓ Контроль антирезорбтивной терапии
- ✓Исследование костного метаболизма

Гиалуроновая кислота (НА)

Через лимфатическую систему НА синовиальной жидкости может переходить в плазму. Определение гиалуроновой кислоты помогает оценить степень повреждения хряща.