Занятие семинарского типа № 2

TEMA: «Патология клетки. Обратимое и необратимое повреждение клетки. Патология белкового и водно-электролитного обмена»

Место проведения: учебная комната

Продолжительность: по расписанию – 3 часа

ЦЕЛЬ ПРАКТИЧЕСКОГО ЗАНЯТИЯ:

Изучить этиологию, патогенез и морфогенез типовых нарушений белкового и водно-электролитного обмена; принципы их фармакологической коррекции.

ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ:

УК-7:

ОПК-2;

 $\Pi K - 3$

ИНФОРМАЦИОННЫЙ БЛОК

ОБМЕН ВЕЩЕСТВ (МЕТАБОЛИЗМ) - фундаментальное свойство всех живых организмов, заключающееся в постоянном взаимопревращении веществ при стремлении к сохранению определенного постоянства (гомеостазу). В метаболизме выделяют процессы распада сложных веществ на простые (катаболизм) и процессы синтеза сложных веществ (анаболизм). Все виды обмена веществ взаимосвязаны, но для удобства принято делить по группам веществ: белковый, липидный (жировой), углеводный, водно-электролитный обмен.

Причинами нарушений метаболизма могут быть любые факторы внутренней и внешней среды.

Среди экзогенных причин наиболее важными являются:

- 1. Нарушения количества и качества принимаемой пищи алиментарные нарушения.
 - 2. Изменения режима движения, труда и отдыха человека.
 - 3. Психические травмы и другие виды стрессов.

Эндогенные факторы, вызывающие нарушения метаболизма:

- 1. Нарушения нервной и эндокринной регуляции метаболизма.
- 2. Наличие наследственных дефектов основных катализаторов метаболизма ферментов (так называемые энзимопатии).
 - 3. Нарушения в органах пищеварения
- 4. Нарушения обмена веществ значительно изменяют строение органов и тканей. Морфологическим выражением нарушений обмена веществ являются дистрофии.

Непосредственной причиной дистрофий являются нарушения клеточных и внеклеточных механизмов трофики. Среди них выделяются:

- 1) в зависимости от преобладания морфологических изменений в специализированных клетках или в строме и сосудах
 - паренхиматозные;
 - мезенхимальные;
 - смешанные;
 - 2) по распространенности процесса
 - общие
 - местные.
 - 3) по преобладанию нарушений того или иного вида обмена
 - белковые,
 - углеводные,
 - липидные,
 - пигментные,
 - смешанные;

ТИПОВЫЕ НАРУШЕНИЯ БЕЛКОВОГО ОБМЕНА

- **І. Белково-алиментарная недостаточность.** Встречается при общем голодании или однообразном, преимущественно растительном питании. В наиболее выраженном виде рассматривается как самостоятельное заболевание квашиоркор, встречается в Африке.
- **II.** Дефекты обмена аминокислот (аминоацидопатии). Их очень много, в основном они связаны с наследственными ферментопатиями и поставляют основу целого ряда заболеваний. Например, дефект фермента, катализирующего переход аминокислоты фенилаланина в тирозин (фенилкетонурия) приводит к повышенному выделению фенилаланина с мочой. Второе последствие-дефицит тирозина, приводит к гораздо более грозному проявлению заболевания врожденному слабоумию. Заместительная терапия проводится пожизненно.
- **III. Тканевые белковые дистрофии.** В зависимости от того, какие повреждаются структуры, выделяют несколько типов дистрофий.

Белковые дистрофии (диспротеинозы).

В зависимости от преимущественной локализации различают паренхиматозные и мезенхимальные белковые дистрофии.

Существует 4 паренхиматозных диспротеиноза.

- 1) при зернистой дистрофии паренхиматозные органы (печень, сердце, почки) увеличены в размерах, дряблой консистенции, на разрезе ткань лишена обычного блеска, тусклая (мутное набухание). В цитоплазме клеток выявляется большое количество зерен или капель белковой природы. Ультраструктурные изменения отражают функциональное напряжение этих клеток в сочетании с элементами деструкции.
- 2) гиалиново-капельная дистрофия возникает чаще в почках, реже в печени и миокарде, не имеет характерных внешних макроскопических признаков. Микроскопически обычно находят крупные гиалиноподобные

капли, иногда заполняющие всю цитоплазму. При электронной микроскопии выявляется выраженная деструкция элементов, иногда фокальный некроз.

- 3) <u>гидропическая (вакуольная) дистрофия</u> -встречается во многих органах и тканях, их внешний вид изменен мало. Микроскопически в цитоплазме, реже в ядре, отмечают появление вакуолей, заполненных жидкостью. Накопление идет в цистернах эндоплазматического ретикулума и митохондриях. При электронной микроскопии выявляются выраженные явления деструкции и внутриклеточного некроза.
- 4) **роговая дистрофия** возникает в эпителии при увеличении его естественного отложения кератина (на коже) или при патологическом появлении роговых масс (слизистые). Возможно, и в толще раковых опухолей ("раковые жемчужины").

Мезенхимальные (стромально-сосудистые) белковые дистрофии.

Разнообразные изменения характерны для основного вещества соединительной ткани (интерстиция).

- 1) мукоидное набухание. Сущность процесса: поверхностная дезорганизация соединительной ткани с накоплением гликозаминогликанов, повышением тканевой и сосудистой проницаемости. Причины: инфекционноревматические аллергические заболевания, болезни, атеросклероз, эндокринопатии. Локализация: стенка сосудов, клапаны сердца, строма фибриллярное набухание органов. Гистологические признаки: разволокнение Феномен метахромазии. коллагеновых волокон. Лимфоцитарная, плазмоклеточная и гистиоцитарная инфильтрация. Исход: восстановление структуры. При прогрессировании - переход в фибриноидное набухание.
- 2) фибриноидное набухание. Сущность процесса: глубокая и необратимая дезорганизация соединительной ткани с деструкцией ее основного вещества и волокон, с резким повышением сосудистой проницаемости и образованием фибриноида. Причины: инфекционно-аллергические заболевания, аутоиммунные заболевания, ангионевротические факторы, воспаление. Локализация: стенка сосудов, клапаны сердца, строма органов. Гистологические признаки: фибриноидное набухание волокон, их плазмопропитывание, гомогенизация, склероз, гиалиноз, фибриноидный некроз. Значение: нарушение функции органа.
- Сущность гиалиноз. процесса: стромально-сосудистый диспротеиноз с образованием вне клеток белка гиалина. Морфогенез: структур, пропитывание волокнистых белками преципитация белков с образованием гиалина. Распространенный гиалиноз: артериальная гипертензия, коллагенозы. Локализация: мелкие артерии, артериолы и клубочки почек, мелкие артерии и артериолы головного мозга, сетчатки глаза, поджелудочной железы, створки клапанов сердца, кожа. Механизм: накопление белков плазмы под эндотелием мелких сосудов. Сущность процесса: глубокий стромально-сосудистый диспротеиноз с образованием в межуточной ткани сложного вещества

амилоида. Теории патогенеза: иммунологическая, локальной клеточной секреции, мутационная, Стадии морфогенеза: клеточная трансформация с образованием амилоидобластов, синтез фибриллярного белка, агрегация фибрилл вне клеток, соединение фибрилл с белками и гликопротеидами плазмы, хондроитинсульфатами ткани. Локализация: отдельные системы органов (первичный), почки, селезенка, печень, надпочечники (вторичный). Исход: процесс необратим, атрофия паренхимы, снижение функции органа.

4) амилоидоз. Характеризуется отложением в соединительной ткани сложного гликопротеида - амилоида, вытесняющего и замещающего паренхиматозные элементы. Амилоид может откладываться в различных органах, они при этом увеличиваются в объеме, становятся плотными, ломкими, восковидными или "сальными". Морфогенез амилоидоза сложен и до конца неясен. Обычно он развивается во внутренних органах при длительно текущих заболеваниях, сопровождающихся интоксикацией: хронические инфекции, опухоли, аутоиммунные заболевания

Нарушения белкового состава крови. В норме в крови содержится 60-80 г/л белка. Состав его неоднороден и по электрофоретической подвижности выделяют следующие фракции белка:

- альбумины (около 50%) самые легкие белки,
- альфа-глобулины (около 20%),
- бета-глобулины (около 20%),
- гамма-глобулины (около 10%) самые крупные белки, представленные белками защитной системы иммуноглобулинами.

В патологии чаще встречается уменьшение содержания белка в крови - гипопротеинемия. Она может быть вызвана либо понижением синтеза белков в печени, либо повышенной их потерей, например, при ожогах, заболеваниях почек. Нередко снижение количества белков в крови сопровождается нарушением соотношения между фракциями белка - диспротеинемией. Как правило, при этом в плазме крови снижается количество альбуминов, увеличивается содержание бета- и гамма-глобулинов.

ТИПОВЫЕ НАРУШЕНИЯ ОБМЕНА ВОДЫ И ЭЛЕКТРОЛИТОВ

Вода — оптимальная среда для растворения и транспорта органических и неорганических веществ и реакций метаболизма. В жидкой среде осуществляются пищеварение и всасывание в кровь питательных веществ. С водой из организма удаляются продукты его жизнедеятельности. Вода является необходимым компонентом для осуществления большинства функций организма. Общее содержание воды в организме взрослого человека составляет 55%, а у эмбриона — до 95% от массы тела. Содержание воды в организме человека определяется в основном его возрастом, массой и полом. Вода организма находится либо внеклеточно, либо внутриклеточно. Внутри- и внеклеточная жидкости

пребывают в состоянии постоянного обмена, хотя состав их и неидентичен. Водный баланс (табл. 2-2) складывается из трёх процессов: поступления воды в организм с пищей и питьём, образования воды при обмене веществ (так называемая эндогенная вода), выделения воды из организма.

Водный баланс складывается из трёх процессов: поступления воды в организм с пищей и питьём, образования воды при обмене веществ (так называемая эндогенная вода), выделения воды из организма.

Изменения или нарушения водного обмена обозначаются как положительный (накопление в организме избытка воды) или отрицательный (дефицит в организме воды) баланс.

При воздействии патогенных факторов и/или отклонении содержания жидкости в организме система регуляции водного обмена, как правило, устраняет эти отклонения или обеспечивает уменьшение их степени. Если же эффективность этой системы недостаточна, развиваются гипогидратация или гипергидратация.

ГИПОГИДРАТАЦИЯ

Для всех видов гипогидратации (МКБ: E86 Уменьшение объёма жидкости) характерен отрицательный водный баланс: преобладание потерь воды над её поступлением в организм. Крайняя степень гипогидратации организма обозначается как эксикоз (лат. exsicco — сушить, высушивать).

Причины гипогидратации: недостаточное поступление воды в организм или повышенная её потеря.

- Недостаточное поступление воды в организм наиболее часто наблюдается при:
 - водном голодании дефиците введения в организм жидкости с пищей и питьём (например, при вынужденном голодании, невозможности обеспечить нормальный режим питья при стихийных бедствиях или боевых действиях);
 - нервно-психических заболеваниях или травмах, снижающих или устраняющих чувство жажды (например, при сотрясении головного мозга; при повреждении нейронов центра жажды в результате кровоизлияния, ишемии, опухолевого роста; при истерии, неврозе);
 - соматических болезнях, препятствующих приёму пищи и питью жидкостей (например, при нарушениях глотания, проходимости пищевода, при травме лицевого черепа).
- Повышенная потеря воды организмом наблюдается при:
 - длительной полиурии (например, у пациентов с почечной недостаточностью, СД; при неправильном применении диуретиков);

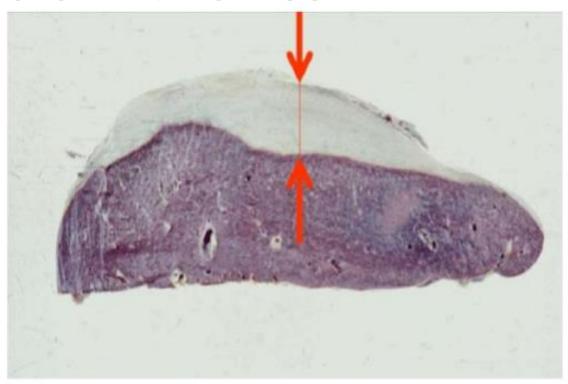
- желудочно-кишечных расстройствах (например, при длительном обильном слюнотечении, повторной рвоте, хронических поносах), а также при наличии свищей желудка и/или кишечника без эквивалентного возмещения утраченного объёма жидкости;
- массивной кровопотере (например, в связи с ранением кровеносных сосудов и/или сердца);
- продолжительном и/или значительном потоотделении (например, в условиях жаркого сухого климата или производственных процессов с повышенной температурой воздуха и сниженной влажностью в помещении), в указанных условиях потери воды могут достигать 10—15 л в сут;
- гипертермических состояниях, включая лихорадку. Увеличение температуры тела на 1 °C приводит к выделению 400—500 мл жидкости в сутки с потом. Одновременно возможны увеличение диуреза, развитие рвоты и/или поноса;
- патологических процессах, вызывающих потерю большого количества лимфы (например, при обширных ожогах, разрушении опухолью лимфатических стволов или ранении их).

ГИПЕРГИДРАТАЦИЯ

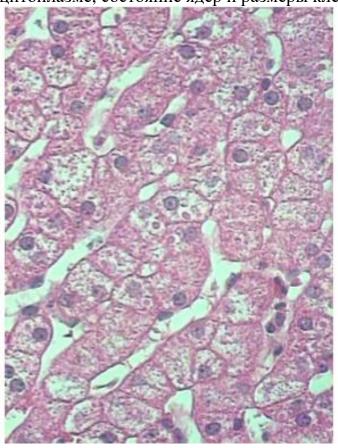
Для гипергидратации характерен положительный водный баланс: преобладание поступления воды в организм по сравнению с её экскрецией и потерями. В зависимости от осмоляльности внеклеточной жидкости различают гипоосмоляльную, гиперосмоляльную и изоосмоляльную гипергидратацию.

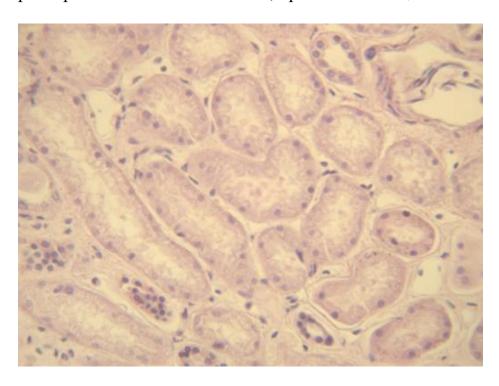
ПРАКТИКУМ

Макропрепараты.

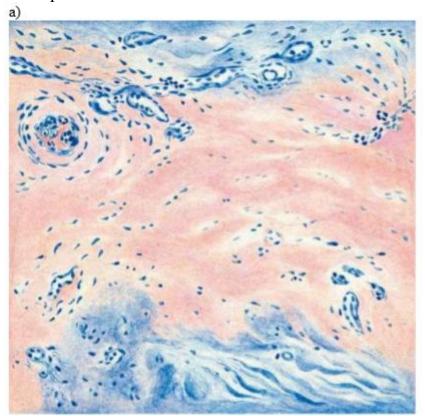

1. «Амилоидоз почки» Указать размеры органа, его плотность, характер цвета органа на разрезе.

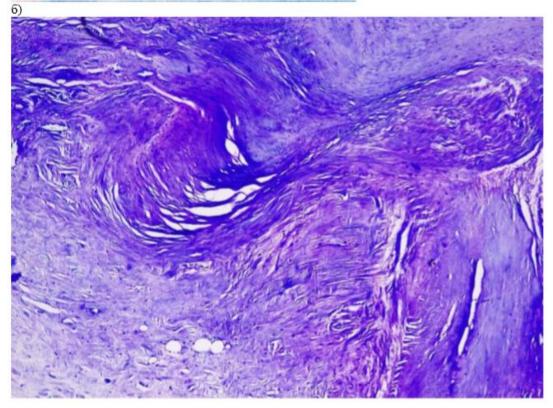
Амилоидоз почки (препарат обработан раствором Люголя).


2. «Гиалиноз капсулы селезенки» Указать размеры органа, его плотность, характер цвета капсулы и органа на разрезе.



Микропрепараты.


1. **«Белковые гиалиновые капли в печени** (гиалиново-капельная дистрофия гепатоцитов) (окраска гематоксилином и эозином). Обратить внимание на размеры, форму, цвет, количество включений в цитоплазме, состояние ядер и размеры клеток.



2. «Гидропическая дистрофия эпителия проксимальных извитых канальцев» (окраска гематоксилином и эозином). Обратить внимание на количество и размеры вакуолей в цитоплазме, состояние ядер и размеры эпителиальных клеток, просвет канальцев.

3. «Мукоидное набухание соединительной ткани» (окраска гематоксилином и эозином (а), толуидиновым синим(б)). Обратить внимание на характер окраски соединительной ткани, найти участки метахромазии.

4. «Фибриноидное набухание соединительной ткани» (окраска гематоксилином и эозином). Обратить внимание на характер окраски соединительной ткани, найти участки метахромазии.

5. «Гиалиноз артерий селезенки» (окраска гематоксилином и эозином). Обратить внимание на уменьшение просвета артериолы, на отложения

гомогенного вещества, отметить локализацию процесса.

6. «**Амилоидоз селезенки**» (окраска гематоксилином и эозином и конгорот). Обратить внимание на характер изменений в центрах лимфоидных фолликулов селезенки, а также явления метахромазии.

ТЕСТОВЫЕ ВОПРОСЫ

- 1. При амилоидозе органы:
- а) увеличены
- б) сморщены
- в) уплотнены
- г) дряблые
- д) сальные на разрезе.
- 2. Амилоидоз -это разновидность:
- а) паренхиматозной дистрофии
- б) стромально-сосудистой дистрофии
- в) смешанной дистрофии
- г) гликогеноза
- д) диспротеиноза
- 3. Расположите процессы в последовательности их развития:
- а) фибриноидное набухание
- б) некроз
- в) склероз
- г) мукоидное набухание
- 4. К обратимым диспротеинозам относятся:
- а) фибриноидное набухание
- б) мукоидное набухание
- в) мутное набухание
- г) амилоидоз
- 5. По преимущественной локализации различают дистрофии:
- а) системные
- б) стромально-сосудистые
- в) органные
- г) паренхиматозные
- д) смешанные
- 6. К паренхиматозным диспротеинозам относятся:
- а) мукоидное набухание
- б) гиалиново-капельная дистрофия
- в) мутное набухание
- г) гиалиноз
- д) гиперкератоз
- 7. Какие из перечисленных признаков характерны для гиалинозаа) часто встречается при гипертонической болезни
- б) внешний вид органа сохранен

- в) может быть исходом склероза
- г) обратимость процесса
- д) необратимость
- е) появление лимфо- и плазмоцитарных инфильтратов
- 8. Для мукоидного набухания характерно:
- а) гидратация интерстиция
- б) наполнение и перераспределение гликозамингликанов
- в) появление капель гиалина в цитоплазме клеток
- г) повышение тканевой и сосудистой проницаемости
- д) обратимое развитие
- е) переход в колликвационный некроз
- 9. В плазме крови больного обнаружено 45 г/л общего белка. Это
- а) лабораторная норма
- б) диспротеинемия
- в) протеинурия
- г) гиперпротеинемия
- д) гипопротеинемия
- е) диспротеиноз
- 10. В плазме крови больного обнаружено 75 г/л общего белка. Это
- а) лабораторная норма
- б) диспротеинемия
- в) протеинурия
- г) гиперпротеинемия
- д) гипопротеинемия
- е) диспротеиноз
- 11. В суточной моче больного обнаружено 0,5 г белка, в том числе 80% альбумины. Это
- а) диспротеинемия
- б) селективная протеинурия
- в) неселективная протеинурия
- г) урикурия
- д) диспротеиноз
- е) сахарный диабет
- 12.У больного, страдающего ревматоидным артритом, появилась нарастающая протеинурия. При исследовании пунктата почки по ходу базальных мембран капилляров клубочков и канальцев обнаружены отложения гомогенных эозинофильных масс. Какие изменения вероятнее

всего, будут обнаружены при применении дополнительных методов исследования?

- а) При окраске конго красным обнаружено кирпично-красное окрашивание по ходу базальных мембран капилляров клубочка и канальцев.
- б) При окраске конго красным кирпично-красное окрашивание канальцевого эпителия.
- в) При окраске суданом оранжевое окрашивание эпителия канальцев.
- г) При просмотре окрашенных конго красным препаратов в поляризационном микроскопе выявлен дихроизм (двухцветность: красные и желто-зеленые участки:
- д) При электронно-микроскопическом исследовании утолщение базальных мембран гломерулярного фильтра за счет фибриллярных масс.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

- 1. Больной на протяжении многих лет страдал бронхоэктатической болезнью с деструкцией бронхиального дерева. В течение последнего года в моче появился белок до 8 г/сут. Отмечались массивные отеки. В терминальном состоянии развилась гиперазотемия, смерть наступила от почечной недостаточности. Какой процесс в почках осложнил течение бронхоэктатической болезни? Опишите кратко макро- и микроскопические изменения в почках? В каких органах одновременно мог развиться этот процесс?
- 2. 2. У мужчины 40 лет с хроническим абсцессом легкого на вскрытии выявлена увеличенная в размерах селезенка, плотной консистенции. На разрезе коричневото-красного цвета, гладкая, с сальным блеском. Какой патологический процесс в селезенке? Назовите его разновидность и форму. Как называется такая селезенка? Опишите макроскопическую картину селезенки. Какие еще органы обычно вовлекаются в этот процесс? Какое вещество образуется в этих органах?
- 3. 3. У больного 49 лет, наблюдающегося по поводу неоперабельного рака желудка на фоне отсутствия аппетита, слабости, общего похудания выявлены массивные отеки под глазами, в области крестца, на ногах. Артериальное давление у пациента 90/60 мм рт.ст., пульс 55 в мин, тоны сердца приглушены. При анализе в плазме крови обнаружено 40 г/л общего белка. Какие изменения со стороны белкового обмена имеют место? Каков механизм их возникновения? Какие изменения соотношения альбуминов и глобулинов вероятны в фореграмме белков плазмы крови? Каково влияние развившихся нарушений на другие виды обмена веществ?