

Исследование иммунного статуса организма человека

План лекции

- Оценка состояния врожденного иммунитета
- Исследование активности фагоцитов
- Определение циркулирующих субпопуляций лимфоцитов
- Исследование уровней иммуноглобулинов, цитокинов

Методы клинической иммунологии позволяют решать следующие задачи (1)

- * Выявлять дефектность того или иного звена иммунной системы (врожденные и приобретенные иммунодефициты);
- * Диагностировать аутоагрессию против нормальных компонентов организма (аутоиммунные заболевания) и избыточное накопление иммунных комплексов (болезни иммунных комплексов);
- Выявлять дисфункции, при которых в том или ином звене иммунитета развиваются признаки гиперфункции в ущерб функционированию других звеньев (гипергаммаглобулинемия, болезнь тяжелых цепей — БТЦ, миелома и др.)

Методы клинической иммунологии позволяют решать следующие задачи (2)

- Осуществлять контроль за эффективностью иммунодепрессивной или иммуностимулирующей терапии;
- * Проводить типирование и подбор доноров при пересадке органов и контроль за проведением иммунодепрессивной терапии при трансплантациях;
- * Проводить фенотипирование гемобластозов;
- * Диагностировать генетическую предрасположенность к соматическим заболеваниям.

Показания к использованию иммунологических методов

- * Подозрение на наличие генетически обусловленных дефектов иммунной системы (первичные иммунодефициты);
- * Аутоиммунные заболевания;
- * Аллергические состояния и заболевания;
- * Инфекционные заболевания с затяжным и хроническим течением;
- * Подозрение на наличие синдрома приобретенного иммунодефицита (СПИД);
- * Злокачественные новообразования;
- * Проведение цитостатической, иммунодепрессивной и иммуномоделирующей терапии;
- Подготовка к серьезным хирургическим вмешательствам и осложненное течение послеоперационного периода;
- * Обследование реципиентов до и после аллотрансплантации органов.

Роль иммунологических методов с точки зрения значимости для клиники

- Состояния, при которых иммунологические методы исследования имеют решающее диагностическое значение (первичные иммунодефициты, дисгаммаглобулинемии, миелома, болезнь тяжелых и легких цепей, СПИД, трансплантации и гемотрансфузии).
- * Болезни, при которых оценка иммунного статуса и проведение специальных иммунологических тестов позволяют провести дифференциальную диагностику внутри группы заболеваний (аутоиммунные заболевания, лейкозы, лимфомы и др.).
- * Заболевания, при которых иммунологические исследования помогают оценить степень их тяжести, прогнозировать осложнения и исходы (инфекционные заболевания с затяжным или хроническим течением, оценка степени риска при оперативных вмешательствах), осуществлять текущий контроль за лечением (антибиотикотерапия, применение цитостатиков, иммуномодуляторов и иммунодепрессантов, лучевая терапия).

Комплемент

- * Дефекты в системе комплемента сопровождаются снижением антиинфекционной резистентности организма.
- * Одновременное определение трех показателей **СЗ, С4** и **титра комплементной активности** позволяет оценить состояние как классического, так и альтернативного пути активации комплемента.
- * Потребление комплемента по классическому пути (иммунные комплексы) сопровождается снижением всех трех показателей.
- * При активации комплемента по альтернативному пути (например, при гломерулонефрите) СЗ и титр комплементной активности снижены, а С4 (компонент классического каскада) остается в норме.

Цитокины

- Цитокины протеины с небольшой молекулярной массой, секретируемые только лимфоцитами, макрофагами и предшественниками клеток крови; осуществляют активацию пролиферации и дифференцировку клеток организма.
- * Они действуют как регуляторы функций иммунной и гемопоэтической систем.
- * К цитокинам относятся интерлейкины, хемокины, факторы стимуляторов клеток, интерфероны, факторы супрессии, факторы некроза опухолей (TNF) и др.

Фактор некроза опухолей в сыворотке крови

- Содержание TNF-а в сыворотке крови в норме равно 0—87 пг/мл.
- * Название произошло от его противоопухолевой активности, связанной с геморрагическим некрозом.
- * Синтезируется активированными макрофагами.
- * При нормальном ответе на любой инфекционный процесс основной задачей TNF-а является защита организма от чужеродного антигена бактерий. В таких случаях под влиянием TNF-а стимулируется NO, который активно соединяется с железосодержащими ферментами бактерий, иммобилизируя или убивая их.
- * В высокой концентрации TNF-а способен повреждать клетки эндотелия и увеличивать микроваскулярную проницаемость

Интерлейкин-2 в сыворотке крови

- Содержание IL-2 в сыворотке крови в норме равно 0,5—2,5 Е/мл.
- * Вырабатывается **активированными** CD4+ T-лимфоцитами, трансформированными T- и B-клетками, лейкемическими клетками, лимфоцитарными активированными клетками-киллерами и NK-клетками.
- * Является фактором роста Т-клеток.
- * Позволяет усилить защиту организма от инфекционных заболеваний путем запуска только тех клеток, которые активны в отношении микроорганизмов и вирусов.
- * Участвует в развитии септического шока, усиливает проницаемость кишечной стенки, тем самым способствуя вовлечению кишечной микрофлоры в септический процесс. По мере прогрессирования сепсиса уровень IL-2 в крови снижается, что требует проведения его коррекции

Интерлейкин-6 в сыворотке крови

- Содержание IL-6 в сыворотке крови в норме составляет 0-33 E/мл.
- * Продуцируется многими типами лимфоидных и нелимфоидных клеток, постоянно присутствует или возникает в ответ на стимулирование IL-1 и TNF.
- * Повышается при воспалительных процессах; его определение и мониторинг является более чувствительным тестом, чем Среактивный белок, особенно на ранних стадиях воспалительного процесса.
- * Имеется корреляция между уровнем IL-6 в моче и стадией гломерулонефрита
- * После трансплантации почки острый пикообразный подъем уровня IL-6 в крови и моче указывает на отторжение почки.
- * Высокие уровни IL-6 в крови отмечаются при болезни Крона, но не при язвенном колите

Интерлейкин-8 в сыворотке крови

- * Содержание IL-8 в сыворотке крови в норме составляет 146-172 Е/мл.
- * IL-8 стимулирует нейтрофилы к направленной миграции, индуцирует дегрануляцию нейтрофилов
- При ревматоидном артрите повышается концентрация IL-6 и IL-8 в крови, наиболее высокие цифры отмечаются в период обострения.
- * Повышенный уровень IL-8 в крови является маркером гепатоцеллюлярной карциномы.
- * У больных с алкогольным гепатитом уровень IL-8 в крови также повышается.
- * Измерение IL-8 в моче может быть полезным для мониторинга гломерулонефрита. Обострение заболевания сопровождается повышением выделения IL-8 с мочой, во время ремиссии, наоборот, его концентрация снижается.
- * При псориазе уровень IL-8 в крови снижен.

Колониестимулирующий фактор в сыворотке крови

- * Содержание КСФ в сыворотке крови в норме составляет 0-4 пг/мл.
- * КСФ пептид, вырабатываемый активированными Тлимфоцитами, фибробластами и фагоцитами.
- * Усиливает пролиферацию гранулоцитов и макрофагов.
- * Применяется для комплексной оценки иммунного статуса больного.
- * Повышение концентрации КСФ отмечается при гиперактивности иммунной системы при аллергических и аутоаллергических заболеваниях, при активации трансплантационного иммунитета, при иммунном ответе на тимусзависимые антигены в остром периоде первичной инфекции.

Фибронектин в плазме

- * Содержание фибронектина в плазме в норме составляет 200-400 мкг/мл.
- * Известны две формы фибронектина тканевая и циркулирующая.
- * Тканевый фибронектин обеспечивает непроницаемость волокон и соединений клеток, а циркулирующий вызывает адгезию материалов, подлежащих уничтожению, к макрофагам, эндотелию и другим клеткам.
- * У больных с септическим процессом выявляется резкое снижение уровня фибронектина в плазме крови.
- * Нехватка фибронектина может быть отнесена к иммунодефицитным состояниям, связанным с дефицитом сывороточных опсонинов.
- * Исследование концентрации фибронектина в слизи шейки матки важно для диагностики патологии беременности, так как ее повышение почти однозначно указывает на прерывание беременности или преждевременные роды.

Неоптерин в плазме

- * Референтные величины содержания неоптерина в сыворотке крови 5,1 ± 1,8 нмоль/л.
- * Промежуточный продукт метаболизма ГТФ (гуанозинтрифосфата), образующийся в макрофагах и моноцитах после их стимуляции у-интерфероном, в меньшей степени а-интерфероном и TNF-а.
- * Маркер активации клеточного иммунного ответа.
- * В отличие от других интерлейкинов отличается высокой стабильностью.
- * Чувствительный лабораторный индикатор активности иммуновоспалительного процесса при аутоиммунных, воспалительных заболеваниях, травмах
- * При высокой активности процесса уровень неоптерина в сыворотке крови повышается в 4-5 раз и более.
- * Повышение выявляют при СПИДе и злокачественных новообразованиях, при этом чем выше концентрация неоптерина, тем хуже прогноз

Исследование функции фагоцитов. Клиническое значение.

Изучение показателей фагоцитоза имеет значение в комплексном анализе и диагностике иммунодефицитных состояний: часто рецидивирующих гнойно-воспалительных процессах, длительно не заживающих ран, склонности к послеоперационным осложнениям.

- * Исследование системы фагоцитоза помогает в диагностике вторичных иммунодефицитных состояний, вызванных лекарственной терапией.
- * В связи с тем что фагоциты участвуют в элиминации иммунных комплексов и активность фагоцитоза тесно связана с активностью компонентов комплемента, а именно СЗ, концентрацией IgG-антител, наличием других опсонизирующих факторов, исследование активности фагоцитоза играет важную роль в диагностике, оценке активности и эффективности терапии при ревматических заболеваниях

Определение поверхностных антигенов лимфоцитов - CD

- Широко применяется при обследовании ВИЧинфицированных, в диагностике гемобластозов, иммунодефицитов и других заболеваний, обусловленных нарушением иммунитета, а также для контроля за приживлением трансплантата и эффективностью иммунотерапии.
- В настоящее время для определения поверхностных антигенов лимфоцитов применяются моноклональные антитела, меченные флюорохромом, и проточный цитофлюориметр.

Моноклональные антитела

- * Вырабатываются гибридомами, которые образуются при слиянии миеломных клеток с нормальными плазматическими клетками.
- * Для фенотипирования лимфоцитов человека используют мышиные моноклональные антитела.
- * Моноклональные антитела используются не только для выявления разных типов клеток, но и для изучения процессов дифференцировки, созревания, межклеточного взаимодействия и активации лимфоцитов.

Флюорохромы

- * Вещества, которые поглощают падающий свет определенной длины волны и излучают поглощенную энергию в виде света большей длины волны.
- * В большинстве случаев антитела метят флюоресцеина изотиоцианатом или фикоэритрином. Оба вещества флюоресцируют под действием света с длиной волны 488 нм, при этом флюоресцеина изотиоцианат излучает зеленый, а фикоэритрин оранжевый свет.
- * Перидинин флюоресцирует под действием света с длиной волны 488 нм, но излучает красный свет.
- * Использование трех флюорохромов, поглощающих возбуждающий свет одной длины волны, позволяет одновременно определять три разных поверхностных антигена.
- * Другие флюорохромы техасский красный, родамин, аллофикоцианин

Проточный цитофлюориметр

- * Прибор, позволяющий быстро оценить состав клеточной популяции по флюоресценции и оптическим характеристикам клеток.
- * С помощью этого прибора можно определить абсолютное и относительное число клеток разных популяций и субпопуляций.
- * К основным преимуществам метода относятся быстрота анализа и возможность одновременной оценки многих параметров клетки: размера, оптической плотности, поверхностных антигенов.
- * Проточная цитофлюориметрия применяется также для анализа ДНК при исследовании клеточного цикла.

Проведение подсчета субпопуляций лимфоцитов

- * В большинстве клинических лабораторий для определения поверхностных антигенов лимфоцитов используют цельную кровь.
- * К небольшому объему цельной крови добавляют меченные флюорохромом моноклональные антитела;
- * После инкубации, необходимой для связывания антител с антигенами клеточной поверхности, разрушают эритроциты;
- * С помощью проточного цитофлюориметра анализируют клеточный состав пробы

Субпопуляции лимфоцитов. Нормальные значения.

- В норме у взрослых около 70% лимфоцитов крови составляют Тлимфоциты,
- * Соотношение лимфоцитов CD4/CD8 превышает 1, как правило, оно составляет 1,5—2, остальные 30% приходятся на В- и NK-лимфоциты.
- * В клинических лабораториях проточная цитофлюориметрия широко применяется для определения содержания лимфоцитов CD4 при ВИЧ-инфекции.
- * Метод становится стандартным для диагностики гемобластозов, поскольку позволяет определить тип и стадию дифференцировки трансформированных клеток.
- * Применяется для выявления других изменений клеточного состава крови и определения активированных лимфоцитов.

Реакция торможения миграции лейкоцитов в крови. Клиническое значение.

- * Тест характеризует активность воспалительного процесса.
- * Увеличение показателей РТМЛ должно рассматриваться как прогностически благоприятный фактор; клинически это сопровождается более быстрым выздоровлением больных острыми хирургическими заболеваниями после оперативного вмешательства и укорочением послеоперационного периода.
- * Торможение миграции лейкоцитов может быть очень значительным при аллергических реакциях.

Спонтанная реакция бластной трансформации лимфоцитов

- * Величина спонтанной бластной трансформации лимфоцитов у взрослых в норме до 10 % .
- * Спонтанная бластная трансформация лимфоцитов способность лимфоцитов к трансформации без стимуляции.
- * Исследование выполняют для оценки функциональной активности Т-лимфоцитов.
- * Изменение показателей теста в ту или иную сторону говорит о нарушении функциональной активности Т-лимфоцитов. Применяется для комплексной оценки иммунного статуса больного

Концентрация иммуноглобулинов

- * Ід представляют собой характерный продукт секреции Вклеток на конечной стадии их дифференцировки, т. е. плазматических клеток.
- * Концентрация Ig в сыворотке является результатом установившегося равновесия между их синтезом и распадом.
- * Уменьшение содержания иммуноглобулинов в сыворотке крови может происходить по трем причинам:
 - * 1) нарушение синтеза одного, нескольких или всех классов иммуноглобулинов;
 - * 2) увеличение деструкции иммуноглобулинов;
 - * 3) значительные потери иммуноглобулинов (например, при нефротическом синдроме).
- * Увеличение количества иммуноглобулинов может быть обусловлено усилением их синтеза или уменьшением интенсивности их распада.
- * Повышенная выработка иммуноглобулинов является причиной гипергаммаглобулинемии.

Вопросы?