

Организация лабораторной службы

План лекции

- Предмет и задачи КЛД
- Организационная структура лабораторной службы
- Основные законодательные, нормативные, методические документы, регламентирующие деятельность лабораторной службы
- Международная система единиц (СИ) в КЛД
- Основные понятия и величины СИ в лабораторных исследованиях

Клиническая лабораторная диагностика. Определение.

КЛД представляет собой медицинскую диагностическую специальность, состоящую из совокупности исследований in vitro биоматериала человеческого организма, основанных на использовании гематологических, общеклинических, паразитарных, биохимических, иммунологических, серологических, молекулярно-биологических, бактериологических, генетических, цитологических, токсикологических, вирусологических методов, сопоставления результатов этих методов с клиническими данными и формулирования лабораторного заключения.

Клинико-диагностическая лаборатория в структуре ЛПУ

- * Является диагностическим подразделением лечебнопрофилактического учреждения и создается на правах отделения.
- * КДЛ, независимо от подчиненности и формы собственности, должна иметь сертификат на избранный вид деятельности.

Штаты КДЛ

* устанавливаются в соответствии с действующими нормативными документами с учетом местных условий или рассчитываются в соответствии с объемом работы (приложение 12 к приказу МЗ РФ № 380).

Продолжительность рабочего времени

* В соответствии с постановлением ПРАВИТЕЛЬСТВА РФ от 14 февраля 2003 г. N 101 для врачей специалистов установлена продолжительность рабочего времени 36 часов в неделю (кроме работающих в туберкулезных диспансерах, с источниками ионизирующего излучения и т.д.)

Должностные инструкции, перечень необходимых навыков и знаний работников КДЛ

- * Приказ 380 от 25.12.1997 г О СОСТОЯНИИ И МЕРАХ ПО СОВЕРШЕНСТВОВАНИЮ ЛАБОРАТОРНОГО ОБЕСПЕЧЕНИЯ ДИАГНОСТИКИ И ЛЕЧЕНИЯ ПАЦИЕНТОВ В УЧРЕЖДЕНИЯХ ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
- * ПРИКАЗ от 6 ноября 2009 г. N 869 «ОБ УТВЕРЖДЕНИИ ЕДИНОГО КВАЛИФИКАЦИОННОГО СПРАВОЧНИКА ДОЛЖНОСТЕЙ РУКОВОДИТЕЛЕЙ, СПЕЦИАЛИСТОВ И СЛУЖАЩИХ, РАЗДЕЛ "КВАЛИФИКАЦИОННЫЕ ХАРАКТЕРИСТИКИ ДОЛЖНОСТЕЙ РАБОТНИКОВ В СФЕРЕ ЗДРАВООХРАНЕНИЯ«
- * ПРИКАЗ от 20 декабря 2012 г. N 1183н ОБ УТВЕРЖДЕНИИ НОМЕНКЛАТУРЫ ДОЛЖНОСТЕЙ МЕДИЦИНСКИХ РАБОТНИКОВ И ФАРМАЦЕВТИЧЕСКИХ РАБОТНИКОВ

Заведующий КДЛ

* Назначается врач клинической лабораторной диагностики, имеющий сертификат специалиста и стаж практической работы в лаборатории не менее 5 лет. Заведующий специализированной лабораторией дополнительно должен иметь подготовку по клинической лабораторной диагностики (усовершенствование).

Заведующий КДЛ. Обязанности.

- Обеспечивает своевременное и качественное проведение клинических лабораторных исследований, непосредственно выполняет часть исследований
- * Составляет должностные инструкции для сотрудников лаборатории на основе утвержденных положений.
- Распределяет работу между сотрудниками.
- * Осуществляет контроль за работой сотрудников лаборатории
- * Руководит внедрением новых методов.
- * Отвечает за работу руководимого им персонала.
- * Организует и проводит мероприятия по повышению квалификации персонала лаборатории
- * Консультирует врачей других специальностей по вопросам диагностики заболеваний.
- * Предоставляет администрации заявку на приобретение оборудования, реактивов и расходных материалов.

Заведующий КДЛ. Обязанности.

Организует рациональное и эффективное использование лабораторной техники и реактивов.

- * Обеспечивает проведение метрологической поверки оборудования.
- * Контролирует учет материальных ценностей, их расход и списание.
- * Организует составление рекомендаций для персонала ЛПУ по правильности сбора, доставки и хранения биологического материала.
- * Осуществляет связь с лечебными отделениями ЛПУ по обеспечению своевременной доставки исследуемого материала в КДЛ и получения результатов лечащими врачами.
- * Отвечает за санитарное состояние лаборатории и выполнение персоналом требований санэпидрежима при работе с кровью и другими биологическими материалами.
- * Обеспечивает условия по охране труда и технике безопасности сотрудников, контролирует соблюдение правил техники безопасности.
- * Проводит систематический анализ показателей деятельности лаборатории, готовит и представляет в установленные сроки отчеты о работе, разрабатывает на их основе мероприятия по совершенствованию деятельности лаборатории учреждения.

Врач КЛД

Назначается специалист с высшим медицинским образованием, освоивший программу подготовки по клинической лабораторной диагностике и получивший сертификат специалиста.

Врач КДЛ. Обязанности.

- Проводит лабораторные исследования в соответствии с возложенными на него обязанностями (согласно мощности и профиля ЛПУ).
- * Обеспечивает использование аналитически и диагностически надежных методов.
- * Участвует в освоении и внедрении новых методов исследований и оборудования.
- * Консультирует врачей других специальностей по вопросам лабораторной диагностики.
- * Составляет рекомендации для персонала лечебных отделений ЛПУ по правилам взятия и доставки биологического материала в КДЛ.
- * Контролирует работу специалистов со средним медицинским образованием.

Врач КДЛ. Обязанности.

- Участвует в интерпретации результатов лабораторных исследований.
- * Осуществляет мероприятия по проведению внутрилабораторного и внешнего контроля качества исследований.
- * Проводит анализ своей работы и работы подчиненных ему специалистов со средним медицинским образованием.
- * Готовит ежемесячные отчеты о своей работе, участвует в составлении годового отчета лаборатории.
- * Проводит занятия для специалистов со средним медицинским образованием с целью повышения их квалификации.
- * Контролирует выполнение средним и младшим медицинским персоналом правил техники безопасности и санэпидрежима.
- * Повышает свою квалификацию в установленном порядке.

Биолог КЛД

назначается специалист с высшим образованием, допущенный действующими нормативными документами к осуществлению деятельности в области клинической лабораторной диагностики и получивший сертификат специалиста.

Медицинский технолог

* Назначается специалист, имеющий среднее медицинское образование по специальности "Лабораторная диагностика" (квалификация по диплому "Медицинский технолог") и сертификат специалиста.

Медицинский технолог. Обязанности.

Выполняет лабораторные исследования по разделу, определяемому заведующим лабораторией в соответствии с квалификационными требованиями и установленными нормами нагрузки.

- * Подготавливает для работы реактивы, химическую посуду, аппаратуру, дезинфицирующие растворы.
- * Регистрирует поступающий в лабораторию биологический материал для исследования, в том числе с использованием персонального компьютера, проводит обработку и подготовку материала к исследованию.
- Проводит взятие крови из пальца.
- * При работе с приборами соблюдает правила эксплуатации, согласно нормативно технической документации.
- * Осваивает новое оборудование и новые методики исследований.

Медицинский технолог. Обязанности.

Проводит контроль качества выполняемых исследований и обеспечивает мероприятия по повышению точности и надежности анализов.

- * Проводит стерилизацию лабораторного инструментария в соответствии с действующими инструкциями.
- * Ведет необходимую документацию (регистрация, записи в журналах, бланках результатов анализа, заявки на реактивы, учет своей работы, составление отчета и т.д.).
- * Выполняет поручения заведующего КДЛ по материально техническому обеспечению лаборатории.
- * Повышает профессиональную квалификацию в установленном порядке, участвует в занятиях для сотрудников со средним медицинским образованием.
- * Соблюдает правила техники безопасности и производственной санитарии, согласно требованиям санэпидрежима.

Медицинский лабораторный техник (фельдшер лаборант)

- * Назначается специалист, имеющий среднее медицинское образование по специальности "Лабораторная диагностика" и квалификацию "Медицинский лабораторный техник" ("фельдшер лаборант") и сертификат специалиста.
- * Обязанности как медицинский технолог, **но**
- * Не работает с приборами, не внедряет новые методы, не ведет контроль качества

Лаборант КЛД

- * назначается специалист, имеющий среднее медицинское образование, или другие специалисты, допускаемые к работе лаборанта, по действующим нормативным документам, прошедшие переподготовку по утвержденной программе и получившие сертификат лаборанта.
- * Обязанности как медицинский технолог, **но**
- * Не внедряет новые методы, не ведет контроль качества

Основные задачи КДЛ (1)

- проведение клинических лабораторных исследований в соответствии с профилем ЛПУ (общеклинических, гематологических, иммунологических, цитологических, биохимических, микробиологических и других, имеющих высокую аналитическую и диагностическую надежность) в объеме согласно заявленной номенклатуре исследований при аккредитации КДЛ в соответствии с лицензией ЛПУ;
- объем выполняемых исследований не должен быть ниже минимального объема, рекомендуемого для ЛПУ данной мощности;
- внедрение прогрессивных форм работы, новых методов исследований, имеющих высокую аналитическую точность и диагностическую надежность;

Основные задачи КДЛ (2)

- повышение качества лабораторных исследований путем систематического проведения внутрилабораторного контроля качества лабораторных исследований и участия в программе Федеральной системы внешней оценки качества (ФСВОК);
- оказание консультативной помощи врачам лечебных отделений в выборе наиболее диагностически информативных лабораторных тестов и трактовке данных лабораторного обследования больных;
- обеспечение клинического персонала, занимающегося сбором биологического материала, детальными инструкциями о правилах взятия, хранения и транспортировки биоматериала, обеспечивающими стабильность образцов и надежность результатов. Ответственность за точное соблюдение этих правил клиническим персоналом несут руководители клинических подразделений;

Основные задачи КДЛ (3)

- повышение квалификации персонала лаборатории;
- проведение мероприятий по охране труда персонала, соблюдение техники безопасности, производственной санитарии, противоэпидемического режима в КДЛ;
- ведение учетно-отчетной документации в соответствии с утвержденными формами.

В соответствии с указанными задачами КДЛ осуществляет:

- * Освоение и внедрение в практику методов клинической лабораторной диагностики, соответствующих профилю и уровню лечебно-профилактического учреждения.
- * Проведение клинических лабораторных исследований и выдачу по их результатам заключений.

Система единиц СИ

- * Международная система единиц, СИ система единиц физических величин, современный вариант метрической системы.
- * СИ является наиболее широко используемой системой единиц в мире, как в повседневной жизни, так и в науке и технике.
- * В настоящее время СИ принята в качестве основной системы единиц большинством стран мира и почти всегда используется в области техники, даже в тех странах, в которых в повседневной жизни используются традиционные единицы.

Система единиц СИ. История.

- СИ является развитием метрической системы мер, которая была создана французскими учёными и впервые широко внедрена после Великой французской революции.
- * До введения метрической системы единицы выбирались независимо друг от друга, поэтому пересчёт из одной единицы в другую был сложным.
- * В 1799 году во Франции были изготовлены два эталона для единицы длины (метр) и для единицы массы (килограмм)
- * В 1874 году была представлена система СГС, основанная на трёх единицах сантиметр, грамм и секунда и десятичных приставках от микро до мега

Система единиц СИ. История.

- В 1875 году представителями семнадцати государств (Россия, Германия, США, Франция, Италия и др.) была подписана Метрическая конвенция, в соответствии с которой были созданы Международный комитет мер и весов
- * В 1889 году ГКМВ приняла систему единиц МКС, сходную с СГС, но основанную на метре, килограмме и секунде, так как эти единицы были признаны более удобными для практического использования
- * В последующем были введены основные единицы для физических величин в области электричества и оптики.

Система единиц СИ. История. Принципы организации.

- * СИ была принята XI Генеральной конференцией по мерам и весам (ГКМВ) в 1960 году.
- * СИ определяет семь основных единиц физических величин и производные единицы (сокращённо единицы СИ или единицы), а также набор приставок. СИ также устанавливает стандартные сокращённые обозначения единиц и правила записи производных единиц.
- * Основные единицы: килограмм, метр, секунда, ампер, кельвин, моль и кандела. В рамках СИ считается, что эти единицы имеют независимую размерность, то есть ни одна из основных единиц не может быть получена из других.

Основные единицы СИ

Величина	Единица				
Наименование	Символ размерности		Гаименование	Обозначение	
		русское	французское/английское	русское	международное
Длина	L	метр	mètre/metre	М	m
Macca	M	килограмм ^[К 3]	kilogramme/kilogram	КГ	kg
Время	Т	секунда	seconde/second	С	s
Сила электрического тока	I	ампер	ampère/ampere	Α	Α
Термодинамическая температура	Θ	кельвин	kelvin	К	К
Количество вещества	N	моль	mole	моль	mol
Сила света	J	кандела	candela	кд	cd

Приставки для кратных единиц

Десятичный множитель	Приставка		Обозначение		Примор
		международная	русское	международное	Пример
10 ¹	дека	deca	да	da	дал — декалитр
10 ²	гекто	hecto	Γ	h	гПа — гектопаскаль
10 ³	кило	kilo	К	k	кН — килоньютон
10 ⁶	мега	mega	M	M	МПа — мегапаскаль
10 ⁹	гига	giga	Γ	G	ГГц — гигагерц
10 ¹²	тера	tera	Т	Т	ТВ — теравольт
10 ¹⁵	пета	peta	П	Р	Пфлопс — петафлопс
10 ¹⁸	экса	exa	Э	E	Эм — эксаметр
10 ²¹	зетта	zetta	3	Z	ЗэВ — зеттаэлектронвольт
10 ²⁴	иотта	yotta	И	Υ	Иг — иоттаграмм

Приставки для дольных единиц

Десятичный множитель	Приставка		Обозначение		Примор
		международная	русское	международное	Пример
10 ⁻¹	деци	deci	Д	d	дм — дециметр
10 ⁻²	санти	centi	С	С	см — сантиметр
10 ⁻³	милли	milli	М	m	мН — миллиньютон
10 ⁻⁶	микро	micro	MK	μ	мкм — микрометр, микрон
10 ⁻⁹	нано	nano	Н	n	нм — нанометр
10 ⁻¹²	пико	pico	П	р	пФ — пикофарад
10 ⁻¹⁵	фемто	femto	ф	f	фс — фемтосекунда
10 ⁻¹⁸	атто	atto	а	а	ас — аттосекунда
10 ⁻²¹	зепто	zepto	3	Z	зКл — зептокулон
10 ⁻²⁴	иокто	yocto	и	у	иг — иоктограмм

Происхождение приставок

Большинство приставок образовано от слов древнегреческого языка.

- * Дека- от др.-греч. δέκα «десять»,
- * гекто- от др.-греч. ἑκατόν «сто»,
- * кило- от др.-греч. χίλιοι «тысяча»,
- * мега- от др.-греч. μέγας, то есть «большой»,
- * гига- это др.-греч. γίγας «гигантский»,
- * а тера- от др.-греч. τέρας, что означает «чудовище».
- * Пета- (др.-греч. πέντε) и экса- (др.-греч. ἕξ) соответствуют пяти и шести разрядам по тысяче и переводятся, соответственно, как «пять» и «шесть».

Происхождение приставок

- * Дольные микро- (от др.-греч. μικρός) и нано- (от др.-греч. νᾶνος) переводятся как «малый» и «карлик».
- * От одного слова др.-греч. окт ω (októ), означающего «восемь», образованы приставки иотта (1000 8) и иокто (1/1000 8).
- * Как «тысяча» переводится и приставка милли, восходящая к лат. mille.
- * Латинские корни имеют также приставки санти от centum («сто») и деци от decimus («десятый»), зетта от septem («семь»). Зепто («семь») происходит от лат. septem или от фр. sept.
- * Приставка атто образована от дат. atten («восемнадцать»).
- * Фемто восходит к дат. и норв. femten или к др.-сканд. fimmtān и означает «пятнадцать».
- * Приставка пико происходит либо от фр. рісо («клюв» или «маленькое количество»), либо от итал. ріссою, то есть «маленький».

Система единиц СИ

- * В немногих странах, не принявших систему СИ определения традиционных единиц были изменены таким образом, чтобы связать их фиксированными коэффициентами с соответствующими единицами СИ.
- * Полное официальное описание СИ вместе с её толкованием содержится в действующей редакции Брошюры СИ (фр. Brochure SI, англ. The SI Brochure). Брошюра СИ издаётся с 1970 года,
- * с 1985 года выходит на французском и английском языках, переведена также на ряд других языков, однако официальным считается текст только на французском языке.

Международные единицы объема

- * В России действует ГОСТ 8.417-2002, предписывающий обязательное использование единиц СИ. В нём перечислены единицы физических величин, разрешённые к применению, приведены их международные и русские обозначения и установлены правила их использования
- * В соответствии с Государственным стандартом, во всех отраслях науки и техники, в том числе и в медицине, обязательным является применение единиц Международной системы единиц (СИ).
- * Единицей объема в СИ является кубический метр (м3).
- * Для удобства в медицине допускается применять единицу объема литр (л; 1 л = 0,001 м3).

Международные единицы количества вещества (1)

- Единицей количества вещества, содержащего столько же структурных элементов, сколько содержится атомов в нуклиде углерода 12С массой 0,012 кг, является моль, т. е. моль это количество вещества в граммах, число которых равно молекулярной массе этого вещества.
- * Количество молей соответствует массе вещества в граммах, деленому на относительную молекулярную массу вещества.
- * 1 MOJE = 10^3 MMOJE = 10^{6} MKMOJE = 10^9 HMOJE = 10^{12} ПМОJE.
- * Содержание большинства веществ в крови выражается в миллимолях на литр (ммоль/л).

Международные единицы количества вещества, активность ферментов

- * Только для показателей, молекулярная масса которых неизвестна или не может быть измерена, поскольку лишена физического смысла (общий белок, общие липиды и т. п.), в качестве единицы измерения используют массовую концентрацию грамм на литр (г/л).
- * Активность ферментов в единицах СИ выражается в количествах молей продукта (субстрата), образующихся (превращающихся) в 1 с в 1 л раствора
 - * моль/(с-л), мкмоль/(с-л), нмоль/(с-л).

Вопросы?