

Получение и подготовка биологического материала для исследований

План лекции

- Получение биоматериала и подготовка препаратов для цитологического, иммунологического, генетического гематологического, биохимического, генетического исследований.
- Приготовление препаратов из различных биологических жидкостей.
- Методы фиксации и окраски препаратов.
- Транспортировка и хранение биологического материала.

Актуальность процедур преаналитического этапа

Достоверность отражения в результатах лабораторных исследований состояния внутренней среды пациента, содержания искомых компонентов биологических материалов в значительной степени зависит от условий, в которых пациент находился в период, предшествовавший взятию у него образца биоматериала, от условий и процедур его первичной обработки образца, транспортирования в лабораторию, то есть факторов преаналитического этапа клинического лабораторного исследования.

Что входит в понятие преаналитический этап

- * а) условия периода, предшествующего взятию у пациента образца биологического материала
- * б) условия и процедуры взятия образца биологического материала у пациента;
- * в) процедуры первичной обработки образца биологического материала;
- * г) условия хранения и транспортирования образцов биоматериалов в клинико-диагностические лаборатории.

Пути стандартизации преаналитического этапа

- правильная подготовка пациентов к проведению лабораторных тестов;
- * информирование пациентов о требуемых ограничениях в диете, физической активности, курении, о правилах сбора биологических материалов, которые обычно собирает сам пациент (моча, кал);
- * инструктирование персонала, участвующего во взятии образцов биологических материалов у пациентов, об особенностях процедур взятия различных видов этих материалов;
- * рациональная организация процесса взятия образцов биоматериалов;
- * полноценное обеспечение процедур взятия образцов биоматериалов необходимыми инструментами, посудой, средствами первичной обработки и транспортировки.

Как необходимо оформлять требования преаналитического этапа

- В каждой медицинской организации следует разрабатывать и вводить для обязательного исполнения внутренние правила ведения преаналитического этапа применительно к каждому виду исследований, выполняемых в лаборатории, учитывающие особенности медицинского профиля и организационной формы учреждения.
- В случае выполнения исследований в лаборатории другого учреждения правила ведения преаналитического этапа, включая условия транспортирования образцов, применительно к этим исследованиям следует согласовывать с руководителем лаборатории, выполняющей эти исследования.
- Наличие и исполнение персоналом правил ведения преаналитического этапа лабораторных исследований является одним из обязательных условий при сертификации процессов выполнения исследований в КДЛ

Требования к условиям и процедурам взятия образца биологического материала

Биологический материал - кровь

- Большая часть клинических лабораторных исследований проводится в образцах крови: венозной, артериальной или капиллярной.
- * Венозная кровь лучший материал для определения гематологических, биохимических, гормональных, серологических и иммунологических показателей.
- * Образец крови берут чаще всего из локтевой вены.
- * Показания для взятия крови из пальца на клиническое исследование крови:
- * анализ на глюкозу, ОАК
 - при ожогах, занимающих большую площадь поверхности тела пациента;
 - при наличии у пациента очень мелких вен или когда они труднодоступны;
 - при выраженном ожирении пациента;
 - при установленной склонности к венозному тромбозу;

Забор крови из катетера

- При взятии образца крови из венозного или артериального катетера, через который проводилось вливание инфузионного раствора, катетер следует предварительно промыть изотоническим солевым раствором в объеме, соответствующем объему катетера, и отбросить первые 5 мл (миллилитров) взятой из катетера крови.
- * Недостаточное промывание катетера может привести к загрязнению образца крови препаратами, вводившимися через катетер.
- * Из катетеров, обработанных гепарином, нельзя брать образцы крови для исследований системы свертывания крови.

Антикоагулянты. Получение плазмы

- * Для получения плазмы кровь собирают с добавлением антикоагулянтов: этилендиаминтетрауксусной кислоты, цитрата, оксалата, гепарина.
- * Для исследований системы свертывания крови применяется только цитратная плазма (в точном соотношении одной части 3,8%-ного (0,129 моль/л) раствора цитрата натрия и девяти частей крови).
- * В большинстве гематологических исследований используют венозную кровь с солями этилендиаминтетрауксусной кислоты (ЭДТА, К или К-ЭДТА).

Сыворотка крови. Химические добавки.

- * Для получения сыворотки кровь собирают без антикоагулянтов.
- Для исследования глюкозы кровь собирают с добавлением ингибиторов гликолиза (фтористого натрия или йодоацетата).
- * Для исследования ряда нестабильных гормонов (остеокальцина, кальцитонина, адренокортикотропного гормона) используют ингибитор апротинин.

Объем получаемой сыворотки. Объем получаемой плазмы.

- * Объем забираемой для исследований крови должен быть рационально рассчитан, исходя из того, что в конечном итоге непосредственно для анализа расходуется лишь половина от первоначально взятого объема (с учетом использования сыворотки или плазмы при гематокрите 0,5).
- Использование плазмы вместо сыворотки дает увеличение на 15%-20% выхода анализируемого материала при одном и том же объеме взятой у пациента крови.

Объем забираемой крови.

- Необходим расчет на каждый анализ. Ориентировочные количества.
- * Для биохимических исследований: 4-5 мл; при использовании гепаринизированной плазмы: 3-4 мл;
- * Для гематологических исследований: 2-3 мл крови с ЭДТА;
- * Для исследований свертывающей системы: 2-3 мл цитратной крови;
- * Для иммуноисследований, включая исследования белков и др.: 1 мл цельной крови для 3-4 иммуноанализов;
- * Для исследования скорости оседания эритроцитов: 2-3 мл цитратной крови;
- Для исследования газов крови: капиллярная кровь 50 мкл (микролитров); артериальная или венозная кровь с гепарином -1 мл.

Последовательность заполнения пробирок

- * Кровь без добавок для получения гемокультуры, используемой в микробиологических исследованиях;
- * Кровь без антикоагулянтов для получения сыворотки, используемой при клинико-химических и серологических исследованиях;
- * Кровь с цитратом для получения плазмы, используемой при коагулологических исследованиях;
- * Кровь с гепарином для получения плазмы, используемой при биохимических исследованиях;
- * Кровь с ЭДТА для получения цельной крови, используемой для гематологических исследований, и плазмы, используемой для некоторых клинико-химических исследований

Сохранение эритроцитов в пробе

С целью сохранения в образце крови эритроцитов применяют смесь антикоагулянтов с добавками, например, АЦД (антикоагулянт - цитрат-декстроза или кислота-цитрат-декстроза).

Вакуумные пробирки

- * Взятие венозной крови облегчается применением вакуумных пробирок. Под влиянием вакуума кровь из вены быстро поступает в пробирку, что упрощает процедуру взятия и сокращает время наложения жгута
- Для обозначения содержимого пробирок с различными добавочными компонентами применяют цветное кодирование закрывающих их пробок

Цветовая кодировка вакуумных пробирок

- * **Красный/белый** без добавок, для сыворотки, клиникохимические исследования, серология;
- * **Зеленый** гепарин, для плазмы, клинико-химические исследования;
- * **Фиолетовый** ЭДТА, для плазмы, гематологические исследования;
- * Голубой цитрат натрия, для коагулологических исследований;
- * Серый фторид натрия, для исследования глюкозы, лактата.
- * Розовый апротинин, ЭДТА для нестабильных гормонов
- * Желтый с активатором свертывания крови и гелем

Биологический материал – спинномозговая жидкость

- Взятие ликвора производится только врачом в условиях стационара. Ликвор получают путем прокола поясничной, субоктиципитальной области или мозговых желудочков одноразовыми пункционными иглами.
- Первые 0,5 мл и всю спинномозговую жидкость (далее СМЖ) с примесью крови следует удалить
- * Пробу помещают с соблюдением правил асептики в пробирки с пробками (для микробиологических исследований в стерильные, для цитологических и клинико-химических исследований в свободные от частиц пыли, без ЭДТА и фторида).
- * Время от момента забора клинического материала до его доставки в лабораторию должно составлять: не более 4 часов при комнатной температуре и не более 1 суток для охлажденных проб.

Объем собираемой спинномозговой жидкости

Фракции пробы	Взрослые	Дети
Микробиология	≂ 2 мл	∞ 1 мл
Цитология (клетки опухоли) Супернатант, используемый для клинической химии	> 10 мл (клетки опухоли)	>1 мл (клетки опухоли)
Общее количество	12 мл	2 мл

Биологический материал – моча

- В зависимости от цели исследования образцы и собирают либо в виде отдельных порций, либо за определенный промежуток времени.
- * Первая утренняя порция мочи (натощак, сразу после сна) используется для общего анализа,
- * Вторая утренняя порция мочи для количественных исследований в соотношении с выделением креатинина и для бактериологического исследования,
- * Случайная порция для качественных или количественных клинико-химических исследований,
- * Суточная моча для количественного определения экскреции аналитов.

Емкость для сбора мочи

- * Желательно использовать сосуд с широкой горловиной и крышкой, по возможности надо собирать мочу сразу в посуду, в которой она будет доставлена в лабораторию.
- * Мочу из судна, утки, горшка брать нельзя, так как даже после прополаскивания этих сосудов может сохраняться осадок фосфатов, способствующих разложению свежей мочи.
- * Если в лабораторию доставляется не вся собранная моча, то перед сливанием ее части необходимо тщательное взбалтывание, чтобы осадок, содержащий форменные элементы и кристаллы, не был утрачен.

Правила сбора мочи

- При взятии утренней мочи (например, для общего анализа) собирают всю порцию утренней мочи (желательно, чтобы предыдущее мочеиспускание было не позже, чем в два часа ночи) в сухую, чистую, но не стерильную посуду, при свободном мочеиспускании.
- * При сборе суточной мочи пациент собирает ее в течение 24 ч на обычном питьевом режиме [1,5-2 л (литра) в сутки]. Утром в 6-8 ч он освобождает мочевой пузырь (эту порцию мочи выливают), а затем в течение суток собирает всю мочу в чистый сосуд с широкой горловиной и плотно закрывающейся крышкой, емкостью не менее 2 л. Последняя порция берется точно в то же время, когда накануне был начат сбор (время начала и конца сбора отмечают).
- * Если не вся моча направляется в лабораторию, то количество суточной мочи измеряют мерным цилиндром, отливают часть в чистый сосуд, в котором ее доставляют в лабораторию, и обязательно указывают объем суточной мочи

Сбор мочи за определенный промежуток времени

- Если для анализа требуется собрать мочу за 10-12 ч, сбор обычно проводят в ночное время: перед сном больной опорожняет мочевой пузырь и отмечает время (эту порцию мочи отбрасывают), затем больной мочится через 10-12 ч в приготовленную посуду, эту порцию мочи доставляют для исследований в лабораторию. При невозможности удержать мочеиспускание 10-12 ч, больной мочится в приготовленную посуду в несколько приемов и отмечает время последнего мочеиспускания.
- При необходимости сбора мочи за два или три часа, больной опорожняет мочевой пузырь (эта порция отбрасывается), отмечает время и ровно через 2 или 3 часа собирает мочу для исследования

Сбор мочи на анализ по Зимницкому

- * За сутки собирают 8 порций мочи при условии исключения избыточного потребления воды. Количество принимаемой жидкости в день сбора мочи не превышало 1-1,5 л. Пациент учитывает количество выпиваемой за сутки жидкости.
- * Заранее необходимо подготовить 8 чистых сухих банок для сбора мочи. Каждую банку подписывают, указывая фамилию и инициалы пациента, отделение, дату и время сбора мочи.
- * 1-я банка с 6 до 9 часов, 2-я с 9 до 12 часов, 3-я с 12 до 15 часов, 4-я с 15 до 18 часов, 5-я с 18 до 21 часа, 6-я с 21 до 24 часов, 7-я с 24 до 3 часов, 8-я с 3 до 6 часов
- * Все порции доставляют в лабораторию. Вместе с мочой доставляют сведения о количестве принятой за сутки жидкости.

Проба Реберга

- 1. Утром помочиться в туалет.
- 2. Выпить 300-400 мл жидкости.
- * 3. Через 10-15 минут помочиться в туалет.
- * 4. Лечь в постель и через 60 и через 120 минут помочиться в отдельную посуду (2 раза)
- * 5. Измерить объем мочи.
- * 6. В промежутке между опорожнением мочевого пузыря взять кровь для исследования на креатинин.
- * Доставить в лабораторию и провести исследование в тот же день.

Трех- и двухстаканная проба мочи

- При проведении пробы трех сосудов (стаканов) собирают утреннюю порцию мочи следующим образом: утром натощак после пробуждения и тщательного туалета наружных половых органов больной начинает мочиться в первый сосуд, продолжает во второй и заканчивает в третий. Преобладающей по объему должна быть вторая порция.
- При диагностике урологических заболеваний у женщин чаще используют пробу двух сосудов, то есть делят при мочеиспускании мочу на две части, важно, чтобы первая часть в этом случае была небольшой по объему.
- * При проведении пробы трех сосудов у мужчин последнюю третью порцию мочи собирают после массажа предстательной железы. Все сосуды готовят предварительно, на каждом обязательно указывают номер порции.

Моча. Консерванты (1).

- В первую порцию собираемой за сутки мочи в зависимости от назначенного вида исследования добавляют различные консерванты:
- * для большинства компонентов тимол (несколько кристаллов тимола на 100 мл мочи),
- * для глюкозы, мочевины, мочевой кислоты, калия, кальция, оксалата, цитрата азид натрия (0,5 или 1,0 г) на все количество суточной мочи,
- * для катехоламинов и их метаболитов, 5-гидроксиуксусной кислоты, кальция, магния, фосфатов соляная кислота (25 мл, что соответствует 6 моль/л на объем суточной мочи),
- * для порфиринов, уробилиногена карбонат натрия, 2 г на литр мочи.

Моча. Консерванты (2)

- Возможно применение жидкости Мюллера (10 г сульфата натрия, 25 г бихромата калия, 100 мл воды) по 5 мл на 100 мл мочи, борной кислоты по 3-4 гранулы на 100 мл мочи, ледяной уксусной кислоты по 5 мл на все количество суточной мочи, бензоата или фторида натрия по 5 г на все количество суточной мочи.
- * Толуол (несколько миллилитров) добавляют в сосуд с мочой так, чтобы он тонким слоем покрывал всю поверхность мочи; это дает хороший бактериостатический эффект и не мешает химическим анализам, но вызывает легкую мутность.
- * Формалин (3-4 капли на 100 мл мочи), задерживает рост бактерий, хорошо сохраняет клеточные элементы, но мешает при некоторых химических определениях (сахар, индикан).
- * Хлороформ оказывает недостаточный эффект и влияет на результаты анализа

Биологический материал - слюна

- Слюну, представляющую собой либо продукт только одной железы, либо смесь секретов нескольких желез, допускается использовать для исследования ряда гормонов и лекарственных веществ, в том числе для лекарственного мониторинга.
- * Сбор слюны может осуществляться с помощью устройств (тампонов, шариков), состоящих из различных абсорбирующих материалов (хлопка, вискозы, полимеров).

Биологический материал - кал

- * Кал для исследования должен быть собран в чистую сухую посуду с широкой горловиной, желательно стеклянную (не следует собирать кал в баночки и флаконы с узким горлом, а также в коробочки, спичечные коробки, бумагу и т.д.).
- * Следует избегать примеси к испражнениям мочи, выделений из половых органов и других веществ, в том числе лекарств.
- * Если для какого-либо химического определения (например, уробилиногена) нужно точно знать количество выделенного кала, то посуду, в которую собирают испражнения, нужно предварительно взвесить

Особенности условий взятия образцов биоматериалов для специальных видов исследований

- **исследований**Образцы для бактериологических исследований особенное внимание на предотвращение загрязнений.
- * Содержимое абсцесса следует набирать через кожу, т.к. ее легче дезинфицировать, чем слизистые оболочки.
- * Жидкий материал предпочтительнее образцов на тампонах.
- * Секрет, содержащий интерферирующие вторичные микроорганизмы, должен быть удален с поверхности открытой раны, затем образец собирают бактериологическим тампоном круговыми вращательными движениями от центра к периферии раны.
- * Объем пробы должен быть насколько возможно большим.
- * Образцы для культуры крови, если возможно, следует собирать в период повышения температуры тела.
- * При подозрении на инфекционный эндокардит следует брать не менее десяти культур крови.

Забор материала на бактериологические исследования

- внимание на предотвращение загрязнений.
- * Содержимое абсцесса следует набирать через кожу, т.к. ее легче дезинфицировать, чем слизистые оболочки.
- * Жидкий материал предпочтительнее образцов на тампонах.
- * Секрет, содержащий интерферирующие вторичные микроорганизмы, должен быть удален с поверхности открытой раны, затем образец собирают бактериологическим тампоном круговыми вращательными движениями от центра к периферии раны.
- * Объем пробы должен быть насколько возможно большим.
- * Образцы для культуры крови, если возможно, следует собирать в период повышения температуры тела.
- * При подозрении на инфекционный эндокардит следует брать не менее десяти культур крови.

Забор материала на вирусологические исследования

- * Образцы для выделения и идентификации вирусов обычно собирают немедленно после появления симптомов (если возможно в первые три дня).
- * Для анализа используют образцы на тампонах (из носа, гортани, глаз), смывы из глотки, жидкость из пузырьков при кожных поражениях, кал, мочу и спинномозговую жидкость.

Забор материала на микологические исследования

- При взятии кожных образцов для микологических исследований соскобы с зон активного поражения берут с помощью скальпеля после тщательной дезинфекции участка кожи.
- * При отложениях на волосах их образцы берут с помощью эпиляционной пипетки или остригают.
- * При поражении ногтей берут их срезы и соскобы с нижней части ногтей.
- * Для обнаружения дрожжей в моче используют случайный образец мочи
- * Для детекции дрожжей или грибков в мокроте предпочтительнее использовать ее утренний образец.

Забор материала для диагностики паразитарных заболеваний

- * При диагностике паразитарных заболеваний исследуют:
 - * кровь (для обнаружения плазмодиев, трипаносомы, лейшмании, микрофилярии),
 - * кал (для обнаружения лямблии, гельминтов),
 - * образцы тканей пораженных органов (для обнаружения Trichinella spiralis larvae, Echinococcus) или самих паразитов (артроподы: клещи, насекомые),
 - * мочу (при мочеполовом шистозомозе).

Забор материала на ПЦР анализ (1)

ПЦР-анализ может быть проведен в образцах:

- * крови с ЭДТУК и цитратом,
- * высушенной крови (на фильтровальной бумаге),
- * костного мозга,
- * мокроты,
- * жидкости из полости рта,
- * бронхиальной лаважной жидкости,
- * спинномозговой жидкости,
- * мочи,
- * кала,
- * биопсийного материала,
- * культуре клеток,
- * фиксированной или покрытой (парафинированной) ткани и т.д.

Забор материала на ПЦР анализ. Предотвращение контаминации.

- * Важным условием получения достоверных результатов является предотвращение загрязнения образцов экзогенной ДНК источники волосы и кожа людей, дверные ручки, лабораторная мебель, порошки, реагенты, термоциклер и наконечники пипеток.
- * Идеальным средством создания чистой беспылевой среды служат настольные шкафы с ламинарным потоком профильтрованного воздуха.
- * Взятие образцов для молекулярно-биологических исследований лучше всего проводить в закрытые одноразовые системы, которые должны быть свободны от нуклеаз, для чего подвергаются автоклавированию в токе горячего воздуха.
- * При использовании незакрытых систем для взятия проб следует, по меньшей мере, надевать одноразовые перчатки.
- * Стеклянная посуда должна обрабатываться 1%-ным раствором диэтилпирокарбоната, который тормозит РНКазы.
- Оставшийся препарат следует тщательно удалить путем автоклавировения посуды и последующей ее обработки жаром при температуре 250 °С в течение 4 ч.

Соскоб эпителиальных клеток из урогенитального тракта женщины

- Соскобы производят из трех точек тремя разными зондами: цервикальный канал, задний свод влагалища, уретра в одну пробирку, поочередно ополаскивая каждый зонд. При необходимости берут материал из эрозивно-язвенных поражений. Отделяемое забирают в небольшом количестве. Присутствие примесей (слизь, кровь, гной) недопустимо, т. к. приводит к деградации исследуемых микроорганизмов.
- * Ни в коем случае нельзя смачивать в пробирках типа «Эппендорф» зонды перед забором отделяемого, т. к. они заполнены или содержат транспортную среду (может вызвать зуд, раздражение, ожог)!
- * Для получения мазков урогенитальнго тракта наносят материал зондом на предметное стекло и подсушивают на воздухе

Соскоб эпителиальных клеток из уретры мужчин

- Перед взятием соскоба из уретры необходимо воздержаться от мочеиспускания в течение не менее двух часов.
- * При наличии свободно стекающих из уретры выделений удаляют их сухим зондом (после чего его выкидывают).
- * Вводят зонд в уретру на глубину 3-4 см. несколькими вращательными движениями производят соскоб эпителиальных клеток и переносят зонд в пробирку типа «Эппендорф» с транспортной средой.
- * Погрузив рабочую часть зонда в транспортную среду, вращают зонд в течение 10-15 сек., избегая разбрызгивания раствора.
- Вынимают зонд из раствора, прижимая его к стенке пробирки.
- * Отжав избыток жидкости, удаляют зонд и закрывают пробирку.
- * Присутствие примесей (слизь, кровь, гной) недопустимо, т. к. приводит к деградации исследуемых микроорганизмов.
- * Для получения мазка, вынув зонд из уретры, наносят мазок такими же вращательными движениями в обратном направлении (против часовой стрелки) на всю поверхность предметного стекла тонким слоем

Забор спермы

- Взятие спермы осуществляют в стерильный одноразовый флакон.
- * Для анализа спермограммы каплю исследуемого материала наносят на предметное стекло и накрывают покровным стеклом.
- * Анализируют нативный препарат в темном поле.

Забор мокроты

Взятие материала осуществляют утром натощак после гигиены полости рта при глубоком откашливании в количестве не менее 0,5 мл в стерильный одноразовый флакон с широким горлом, завинчивающейся крышкой, объемом не менее 50 мл.

Биопсийный материал

- Взятие материала осуществляют из зоны предполагаемого местонахождения возбудителя инфекции, из поврежденной ткани или из пограничного с повреждением участка.
- * Материал помещают в одноразовые стерильные пробирки типа «Эппендорф» объемом 1,5 мл, содержащие 0,5 мл транспортной среды.
- * Возможно приготовление препарата сразу после взятия материала (мазки-отпечатки, распределение материала по предметному стеклу).

Вопросы?