

Исследование белкового состава крови

Белки плазмы крови

- Белки представляют собой высокомолекулярные полипептиды, состоящие из более чем 20 видов α-аминокислот.
- Полипептиды отличаются от белков мол. массой 8000–10 000.
- Различают простые и сложные белки. Простые белки содержат только аминокислоты, а сложные - ещё и неаминокислотные компоненты: гем, производные витаминов, липиды или углеводы и др.
- Плазма крови человека содержит более 100 различных белков, различающихся по происхождению и функциям.

Белки плазмы крови. Роль в диагностике.

- Общий белок
- Фракции белков
- Индивидуальные белки

Гипопротеинемия.

Пониженная концентрация белков в крови называется гипопротеинемия (норма 65-85г/л). Чаще связана с гипоальбуминемией.

Гипопротеинемия возникает вследствие:

- недостаточного введения белка (при длительном голодании или при продолжительном соблюдении безбелковой диеты);
- повышенной потере белка (при различных заболеваниях почек, кровопотерях, ожогах, новообразованиях, сахарном диабете, асците);
- нарушении образования белка в организме, при недостаточности функции печени (гепатиты, циррозы, токсические повреждения), длительном лечении ГК, нарушении всасывания (при энтеритах, энтероколитах, панкреатитах);
- сочетания различных из перечисленных выше факторов.

Гиперпротеинемия.

Повышенная концентрация белков в крови называется гиперпротеинемия (норма 65-85г/л). Чаще связана с гиперглобулинемией

Гиперпротеинемия нередко развивается как следствие:

- Дегидратации в результате потери части внутрисосудистой жидкости (тяжёлые травмы, обширные ожоги, холера).
- При острых инфекциях концентрация общего белка часто повышается вследствие дегидратации и одновременного возрастания синтеза белков острой фазы.
- При хронических инфекциях содержание общего белка в крови может нарастать в результате активации иммунологических процессов и повышенного образования Ig.
- При появлении в крови парапротеинов патологических белков, вырабатываемых в большом количестве при миеломной болезни, при болезни Вальденстрёма.

Методы определения общего белка и индивидуальных белков

- Азотометрический
- Весовые (гравиметрические)
- Преципитационные
 - Нефелометрические;
 - Турбидиметрические
- Спектрофотометрические
- Фотометрические (Колориметрические)
- Рефрактометрические
- Поляриметрические

Белковые фракции сыворотки крови.

- Для разделения белковых фракций обычно используют метод электрофореза, основанный на различной подвижности белков сыворотки в электрическом поле. Это исследование в диагностическом отношении более информативно, чем определение только общего белка или альбумина.
- Исследование белковых фракций позволяет судить о характерном для какого-либо заболевания избытке или дефиците белка только в самой общей форме.

Принцип электрофореза белков

- Ацетатцеллюлозная пленка, гель, специальная бумага (носитель) помещается на рамку, при этом противоположные края носителя свисают в кюветы с буферным раствором.
- На линию старта наносится сыворотка крови.
- Метод заключается в движении буферного раствора по поверхности носителя под влиянием электрического поля. Двигаясь, буферный раствор захватывает молекулы белков сыворотки. Молекулы с наибольшим отрицательным зарядом и наименьшим размером, т.е. альбумины, двигаются быстрее остальных. Наиболее крупные и нейтральные (γ-глобулины) оказываются последними.
 - На ход электрофореза влияет **подвижность** разделяемых веществ, находящаяся в зависимости от следующих факторов: заряда (обычно зависит от рН), размера и формы молекул веществ, электрического поля, буфера и носителя (учитывается его гидрофильность и адсорбционная способность).

Принцип электрофореза белков

Электрофореза белков. Количество фракций.

- Количество выделяемых фракций определяется условиями проведения электрофореза.
- При электрофорезе на бумаге и пленках ацетата целлюлозы в клинико-диагностических лабораториях выделяют 5 стандартных фракций, в то время как в полиакриламидном геле до 20 и более фракций.
- При использовании более совершенных методов (радиальная иммунодиффузия, иммуноэлектрофорез и других) в составе глобулиновых фракций выявляются многочисленные индивидуальные белки.

Белковые фракции сыворотки крови.

Альбумины	52-65 %	35-50 г/л
α₁-Глобулины	2,5-5 %	1-3 г/л
α ₂ -Глобулины	7-13 %	6-10 г/л
β-Глобулины	8-14 %	7-11 г/л
ү-Глобулины	12-22 %	8-16 г/л

Методы определения альбумина

- Фотометрические (взаимодействии альбумина с красителями. С этой целью применяют бромкрезоловый зеленый (БКЗ), бромкрезоловый красный, метиловый оранжевый, натриевую соль 2-(4-оксиазобекзол)-бензойной кислоты (ОБК); бромфеноловый голубой и др.).
- Электрофоретические
- Иммунологические (взаимодействие со специфическими антителами, чаще для определении альбумина мочи)

Фракция α1-глобулинов включает:

- α1-антитрипсин (основной компонент этой фракции) ингибитор многих протеолитических ферментов – трипсина, химотрипсина, плазмина и.т.д;
- α1-кислый гликопротеин (орозомукоид). Он повышается в ответ на различные острые и хронические воспалительные стимулы. Используется для индикации острофазового ответа.
- Сывороточный амилоидный белок А
- α1-липопротеин (ЛПВП) участвует в транспорте липидов;

Фракция α2-глобулинов включает:

- α2-макроглобулин (основной компонент фракции) является регулятором иммунной системы и участвует в развитии инфекционных и воспалительных реакций.
- Гаптоглобин это гликопротеин, который образует комплекс с гемоглобином, высвобождающимся из эритроцитов при внутрисосудистом гемолизе, утилизирующийся затем клетками ретикулоэндотелиальной системы, что необходимо для предотвращения потерь железа и повреждения почек гемоглобином.
- Церулоплазмин специфически связывает ионы меди, а также является оксидазой аскорбиновой кислоты, адреналина, диоксифенилаланина (ДОФА), способен инактивировать свободные радикалы. При низком содержании церулоплазина (болезнь Вильсона-Коновалова) происходит накопление меди в печени (вызывая цирроз) и в базальных ганглиях мозга (причина хореоатетоза). Увеличение содержания церулоплазмина специфично для меланомы и шизофрении.
- Аполипопротеин В участвует в транспорте липидов.

Фракция β-глобулинов включает:

- Трансферрин белок, который осуществляет транспорт железа, тем самым предотвращая накопление ионов железа в тканях и потерю его с мочой.
- Гемопексин связывает гем и предотвращает его выведение почками.
- Компоненты комплемента участвуют в реакциях иммунитета.
- β-липопротеин участвует в транспорте холестерина и фосфолипидов.

Изменения фракции үглобулинов

- γ-Фракция содержит lg (lgG, lgA, lgM, lgD, lgE),
- Повышение γ-глобулинов отмечают при реакции системы иммунитета: при инфекциях, воспалении, коллагенозах, деструкции тканей и ожогах. Значительная гипергаммаглобулинемия, отражая активность воспалительного процесса, характерна для хронических активных гепатитов и циррозов печени.
- Повышение фракции ү-глобулинов наблюдают у 88–92% больных хроническим активным гепатитом, при высокоактивном и далеко зашедшем циррозе печени, при этом нередко содержание ү-глобулинов превышает содержание альбуминов, что считают плохим прогностическим признаком.

Типы протеинограмм

Тип протеино-	Альбу	Фракции глобулинов				Примеры заболеваний	
граммы	мины	α1	α2	β	γ		
Острые воспаления	↓ ↓	↑	↑	_	↑	Начальные стадии пневмоний, острые полиартриты, экссудативный туберкулез легких, острые инфекционные заболевания, сепсис, инфаркт миокарда	
Хронические воспаления	↓	_	↑ ↑	-	↑ ↑	Поздние стадии пневмоний, хронический туберкулез легких, хронический эндокардит, холецистит, цистит и пиелит	
Нарушения почечного фильтра	↓ ↓	-	↑	↑	\	Генуинный, липоидный или амилоидный нефроз, нефрит, нефросклероз, токсикоз беременности, терминальные стадии туберкулеза легких, кахексии	

Типы протеинограмм Фракции

протеино-	Альбу	глобулинов				Примеры заболеваний	
граммы	мины	α1	α2	β	γ	Tiprimepbi saconebanini	
Злокачест-						Метастатические новообразования с	
венные	$\downarrow \downarrow$	$\uparrow \uparrow$	$\uparrow \uparrow$	$\uparrow\uparrow\uparrow$	↑ ↑	различной локализацией первичной	
опухоли						опухоли	
						Последствия токсического	
						повреждения печени, гепатиты,	
						гемолитические процессы, лейкемии,	
Гепатиты	\downarrow	_	_	\uparrow	↑ ↑	злокачественные новообразования	
						кроветворного и лимфатического	

Тип

Некроз

печени

печени, гепатиты, ие процессы, лейкемии, ные новообразования о и лимфатического аппарата, некоторые формы полиартрита, дерматозы Цирроз печени, тяжелые формы индуративного туберкулеза легких, некоторые формы хронического

полиартрита и коллагенозов

Типы протеинограмм

γ

Обтурационная желтуха,

α₂-Плазмоцитомы

 β_1 -Плазмоцитомы, β_1 -

макроглобулинемия

макроглобулинемия и

некоторые ретикулезы

Вальденстрема

у-Плазмоцитомы,

желтухи, вызванные развитием

рака желчевыводящих путей и

головки поджелудочной железы

плазмоклеточная лейкемия и

	.,	or inportant	or parriiri
Тип протеино-		Фракции	

α1

α2

глобулинов граммы Альбум Примеры заболеваний

ины

Механические

α₂-глобулиновые

плазмоцитомы

β-глобулиновые

плазмоцитомы

ү-глобулиновые

плазмоцитомы

желтухи

Белки острой фазы. Определение.

Большая группа белков сыворотки крови, синтезирующаяся в печени, концентрация которых возрастает при наличии воспаления, сдавления, ожога, бактериальной или вирусной инфекции.

Классификация БОФ по степени увеличения их концентрации в сыворотки крови (1)

			Концентрация в
Группы	Степень увеличения	БОФ	сыворотке крови
БОФ	концентрации БОФ		здорового человека
			(г/л)
1 группа	«Главные» БОФ, уровень	С-реактивный белок	
	которых возрастает при	(СРБ)	< 0,005
	повреждении очень быстро	Амилоидный белок А	
	(в первые 6-8 часов) и	сыворотки	
	значительно (в 20-100 раз, в	-	
	отдельных случаях - в 1000		
	раз).		
2 группа	Белки, концентрация которых	Орозомукоид (кислый	0,4 - 1,3
	может умеренно	α_{\square} -гликопротеид)	
	увеличиваться (в 2-5 раз) в	α□- Антитрипсин	1,4 - 3,2
	течениш 24 ч	Гаптоглобин	0,5 - 3,2
		Фибриноген	1,8 - 3,5 (плазма)

Классификация БОФ по степени увеличения их концентрации в сыворотки крови (2)

			Концентрация в
Группы	Степень увеличения	БОФ	сыворотке крови
БОФ	концентрации БОФ		здорового человека
			(г/л)
3 группа	Незначительное увеличение	Церулоплазмин	0,2 - 0,5
	концентрации (на 20 - 60%) в	С3 - комплект	0,5 - 0,9
	течение 48ч	С4 - комплект	0,1 - 0,4
4 группа	Нейтральные БОФ	Иммуноглобулин G	8 - 20
	(белки, концентрация которых	Иммуноглобулин А	0,9 - 4,5
	может оставаться в пределах	Иммуноглобулин М	0,6 - 2,5
	нормальных значений, однако они принимают участие в	α ₂ -Макроглобулин	1,2 - 3,2
	реакциях острой фазы		
	воспаления).		
5 группа	"Негативные" БОФ, уровень	Альбумин	37 - 53
	может снижаться на 30-60 % в	Трансферрин	2,3 - 4,3
	течение 12 - 18 ч	Преальбумин	0,25 - 0,45

Белки острой фазы

- Являются неспецифичными
- Хорошо коррелируют с активностью и тяжестью заболевания, стадией процесса и массивностью повреждения
- Используют для мониторинга течения заболевания и контроля за эффективностью проводимой терапии
- Изменения концентрации варьируют в широких пределах.

Белки острой фазы. Методы определения.

- Инструментальные: нефелометрия, иммунотурбидиметрия примерно равноценны по чувствительности, специфичности, трудоемкости и стоимости исследования. Возможна автоматизация. Оптимальным для больших и средних лабораторий.
- Методы, не требующие оборудования: радиальная иммунодиффузия полностью готовые к употреблению иммунодиффузионные планшеты. Возможно определение СРБ и других БОФ без приборов и дополнительных реагентов. Рекомендованы для небольших лабораторий.
- Латекс-агглютинация быстрый полуколичественный метод определения СРБ. Назначение скрининг повышенных концентраций, после чего следует перейти к мониторингу с использованием количественных методов.

Заключение

- Определение белка и белковых фракций играет важную роль для диагностики различных патологических состояний
- Из острофазовых белков наибольшее значение играет определение С-реактивного протеина
- При повышении концентрации общего белка крови следует исключить парапротеинемии
- Снижение общего белка крови чаще обусловлено снижением концентрации альбумина
- Наибольшее диагностическое значение имеет определение индивидуальных белков в сыворотке крови

Вопросы?