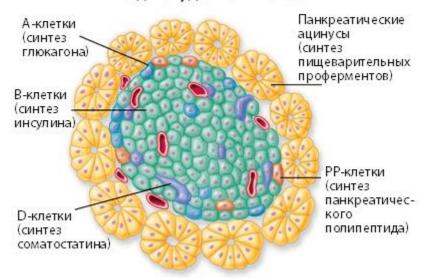


Лабораторная диагностика заболеваний поджелудочной железы

План лекции

• Поджелудочная железа, строение, функции. Оценка функции поджелудочной железы. Активность ферментов в дуоденальном соке. Определение активности амилазы, липазы, трипсина. Панкреатиты, диагностическое значение определения активности аамилазы в крови и моче. Активность трипсина, а1-протеазного ингибитора, а2-макроглобулина в крови.

Анатомия поджелудочной железы



Поджелудочная железа имеет вид постепенно суживающегося тяжа и состоит из головки, тела, хвоста.

ПЖ находится позади желудка задней стенке брюшной на полости забрюшинно, на уровне нижних грудных и верхних поясничных позвонков, окружена тонкой капсулой. ПЖ пересекает своей длинной осью позвоночник почти поперечно, причем 1/3 органа (головка) находится правее и 2/3 (тело и хвост) - левее срединной плоскости тела.

Базальная пластинка Вставочный проток Вакуоли Зкзокринные клетки

Островки Лангерганса поджелудочной железы

Функции поджелудочной железы

- Экзокринная представлена расположенными в дольках панкреатическими ацинусами
- Эндокринная образована лежащими между ацинусов панкреатическими островками, или островками Лангерганса, клетки которого выделяют инсулин, глюкагон, соматостатин, панкреатический полипептид, вазоактивный интестицинальный пептид

Эндокринная функции поджелудочной железы

Эндокринная часть ПЖ представлена островками Лангерганса, которые расположены по всей железе (относительно больше их в хвосте). В островках находятся 6 типов клеток:

- альфа (вырабатывают глюкагон)
- бета (инсулин)
- дельта (соматостатин)
- G (гастрин)
- Е (функция не выяснена)
- F (вырабатывают панкреатический полипептид антагонист холецистокинина).

Экзокринная функции поджелудочной железы

- Экболическая продукция ферментов. Поджелудочная железа является главным источником ферментов для переваривания жиров, белков и углеводов главным образом, трипсина и химотрипсина, панкреатической липазы и амилазы.
- Гидрокинетическая секреция воды, бикарбонатов, электролитов

Сложности в диагностике заболеваний ПЖ

- Забрюшинное расположение ПЖ, что препятствует ее визуализации и морфологическому исследованию
- Тесные топографические и функциональные взаимоотношения ПЖ с другими органами
- Большие компенсаторные возможности ПЖ способствуют тому, что ее функциональные тесты длительно сохраняют нормальные показатели
- Частое развитие панкреатитов как вторичных заболеваний

Таким образом в диагностике заболеваний ПЖ важное значение играют инструментальные и лабораторные методы диагностики

Лабораторные тесты в диагностике заболеваний ПЖ

Выявление повреждения, цитолиза ацинарных клеток (диагноз панкреатита как такового):

• определение содержания (активности) панкреатических ферментов в крови/моче.

Оценка степени тяжести, прогноза панкреатита (развития панкреонекроза, его инфицирования, вероятности осложнений и летального исхода):

• маркеры активности воспаления.

Тесты для определения этиологии панкреатита.

Функциональные тесты:

Внешнесекреторная функция ПЖ:

• определение содержания (активности) панкреатических ферментов или продуктов гидролиза субстратов в соке ПЖ, в дуоденальном содержимом, в кале, моче, выдыхаемом воздухе.

Эндокринная функция ПЖ:

• определение уровня глюкозы, гормонов, панкреатического ПП в крови.

Исследование специфических белков — «онкомаркеров».

Гистологическое, цитологическое, генетическое исследования.

Панкреатические функциональные тесты

Зондовые - определение содержания бикарбонатов, ферментов в дуоденальном содержимом:

- Прямые стимуляция непосредственно ацинарных и протоковых клеток ПЖ (секретин-панкреозиминовый, секретин-церулеиновый, эуфиллино-кальциевый тесты).
- *Непрямые стимуляция выработки секретина и панкреозимина* (тест Лунда, солянокисло-масляный тест).

Беззондовые тесты:

- Прямые определение содержания панкреатических ферментов в кале (эластаза-1, химотрипсин и др.).
- Непрямые определение содержания продуктов гидролиза субстратов:
 - в кале (копроскопия, суточное выделение жира);
 - в моче (ПАБК-тест, панкреолауриловый тест, тест Шиллинга);
 - 3. в выдыхаемом воздухе (триглицеридный, протеиновый, амилазный и др.).

Острый панкреатит

это полиэтиологическое острое воспаление ПЖ, возникающее вследствие аутолиза ее ткани активированными панкреатическими ферментами и проявляющееся широким спектром морфологических изменений — от отека ПЖ до панкреонекроза.

* В отличие от ХП, для ОП после выздоровления характерно полное отсутствие клинических проявлений, морфологическое и функциональное восстановление ПЖ. Если причина ОП не устранена (ЖКБ, злоупотребление алкоголем), то высока вероятность повторных эпизодов ОП.

Острый панкреатит. Этиопатогенез

- ЖКБ 40-65% (чаще у женщин 50-70 лет)
- Алкоголь 25-40% (чаще у мужчин 18-30 лет)
- Менее частые причины: вирусная инфекция, аскаридоз, травмы, операции на ПЖ, гиперлипидемия, укусы змей (кобра), гиперкальциемия (гиперпаратиреоз), аутоиммунные поражения ПЖ

ДИАГНОСТИКА ЗАБОЛЕВАНИЙ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

- * **Амилаза** кальцийзависимый фермент, ионы кальция абсолютно необходимы для проявления функциональной активности.
- * Полная активность проявляется только в присутствии различных анионов хлорида, бромида, нитрата, холата, фосфата. Хлорид-ионы и бромид являются самыми эффективными активаторами.
- * Активность амилазы обнаруживают во многих органах и тканях. Самая высокая концентрация отмечается в слюнных железах, которые секретируют амилазу (S-тип), осуществляющую гидролиз крахмала пищи во рту и пищеводе, ее действие заканчивается в желудке.
- * В поджелудочной железе амилаза (Р-тип) синтезируется ацинарными клетками и попадает в кишечник через панкреатические протоки.

Методы определения активности амилазы.

* Амилокластические методы. Трудности при использовании крахмала в качестве субстрата связаны с тем, что образцы крахмала значительно отличаются по многим параметрам, в частности по соотношению амилозы и амилопектина. В этих методах активность амилазы определяют по уменьшению концентрации субстрата реакции — крахмала. Йодометрические методы оказались наиболее популярными.

Методы определения активности амилазы.

* Турбидиметрические и нефелометрические методыоснованы на способности амилазы снижать мутность суспензии субстрата в результате ферментативной деградации молекулы субстрата. Использование лазерной нефелометрии привело к повышению аналитической чувствительности и точности по сравнению с обычными нефелометрами. Турбидиметрические и светорассеивающие методы выполняют путем непрерывной регистрации или фиксированного времени. Эти методы сложно стандартизировать из-за различий в свойствах субстрата.

Методы определения активности амилазы.

- * Вискозиметрические методы. Основаны на изменении вязкости инкубационной среды в ходе гидролиза крахмала амилазой. В настоящее время не используются.
- * Редуктометрические методы в данную группу включены методы, в которых скорость ферментативной реакции контролируют путем определения образующихся в среде инкубации при гидролизе крахмала так называемых «редуцирующих» соединений сахаров, декстринов.

Выбор метода определения активности амилазы

- * Использовать субстрат с известной структурой, качеством, разумной стоимостью и известными продуктами реакции.
- * Реакция не должна зависеть от изменений условий реакции (pH, белок, концентрации глюкозы, соотношение между объемом среды и образца).
- * Использовать непрерывный метод измерения и поддерживать кинетику нулевого порядка и lag-фазу не более 3 мин.
- Метод должен быть достаточно чувствительным при температуре 30 °C.
- * Метод должен быть нечувствительным к вмешательству эндогенной глюкозы.

Перспективные методы лабораторной диагностики острого панкреатита

- * Определение эластазы в сыворотке крови, кале.
- * Определение колипазы в сыворотке крови.
- Определение молекул средней массы (СМ).
- * Расчет амилазо-креатининового индекса.
- Расчет коэффициента перитониальной экссудации.

Лабораторные показатели крови при остром панкреатите

- * Изменения лабораторных показателей при разных формах ОП и в зависимости от характера морфологических изменений в ПЖ:
- 1. очень высокая протеолитическая активное активность липазы в крови.
- Предельно высокая активность трипсина и резкое снижение уровня его ингибитора.
- 3. Важной особенностью формы ОП являются нарушения гемостаза, связанные с активацией фибринолиза, с соответствующими геморрагическому синдрому.

Лабораторные показатели крови при остром панкреатите

В начале заболевания изменяется уровень гемоглобин величина гематокрита.

- * В 75—90% с чаев острого панкреатита отмечается лейкоцитоз. У большинства больных (68%) число лейкоцитов колеблется в пределах 10—20х109/л выше. При отечных формах лейкоцитоз обычно не превышает 15х109/л, при деструктивных формах острого панкреатита количество лейкоцитов достигает 15—25х109/л). Лейкоцитоз проявляется уже в первые часы заболевания и исчезает по мере стихания острых явлений.
- * Активность а-амилазы сыворотки является важным показателем, но не специфическим для острого панкреатита. Кроме того, повышение ее уровня может быть кратковременным. Для повышения информативности рекомендуется определение активности амилазы крови и мочи сочетать с определением активности липазы сыворотки крови, являющейся наиболее специфичным критерием, и параллельным определением концентрации креатинина в моче и сыворотке крови.
- * Своеобразным диагностическим тестом в лабораторной диагностике острого панкреатита является определение активности эластазы в сыворотке крови и кале. Данный показатель остается значимым на протяжении нескольких дней даже после единичного приступа ОП.

ЭЛАСТАЗА

- * Эластаза является протеолитическим ферментом. Она имеет сродство к пептидным участкам, содержащим аланин, валин и лейцин, гидролизующих по карбоксильным группам. Синтезируется в ацинарных клетках поджелудочной железы и экскретируется в просвет двенадцатиперстной кишки вместе с другими ферментами, в виде предшественника проэластазы, которая активируется трипсином.
- * При физиологических условиях концентрация эластазы в панкреатическом соке колеблется между 170 и 360 мкг/мл, составляя около 6% от всех белков (ферментов). В просвете кишечника связывается, главным образом с желчными кислотами.

ЭЛАСТАЗА

- * Копрологическое тестирование. В отличие от других энзимов, экскретируемых поджелудочной железой, эластаза в процессе пассажа по кишечному тракту не подвергается деградации и выделяется в фекальные массы в неизменном виде, интактном состоянии. Это диагностическое свойство, позволяет рассматривать тест, как «золотой стандарт» в диагностике и оценке экзокринной функции поджелудочной железы. Следовательно снижение эластазы свидетельствует о развитии экзокринной панкреатической недостаточности. Уровень нормальных значений более 200 мкг/мл каловых масс.
- * Сывороточная эластаза. Вследствие воспалительных процессов поджелудочной железы и отеков в зоне ацинарных клеток, часть секретируемых ферментов, включая эластазу, попадает в общий кровоток. Эластаза возрастает в острый период панкреатита, что позволяе поставить диагноз этого заболевания. Концентрация фепмента начинает возрастать через 6-48 часов от начала заболевания, остается повышенной в течении нескольких дней. Диагностическая чувствительность эластазы в период 48-96 часов от начала заболевания достигает 95-100% при специфичности 96%. В сыворотке здоровых людей концентрация эластазы колеблется в пределах 0,1-4,0 нг/мл

МЕТОДЫ ИССЛЕДОВАНИЯ ЭЛАСТАЗЫ

- * Иммуноферментный метод, использующий два различных типа моноклональных антител «сендвич-метод».
- * Иммуноферментный метод, использующий поликлональные антитела.

МЕТОДЫ ИССЛЕДОВАНИЯ ЛИПАЗЫ

- * Классический метод определения активности липазы основан на определении количества образовавшихся из субстрата жирных кислот: титрование, колориметрический, энзиматический
- * Турбидимитрический или нефелометрический метод основан на просветлении эмульсии субстрата.
- * Иммунохимический метод, в котором липаза определяется как белок (концентрация вместо активности)
- * Электрофорез в агарозев крови и секрете поджелудочной железы выявляются 3 формы фермента L1 и L2 формы описаны как изоферменты панкреатической липазы, а L3 скорее всего, холестеролэстераза. L1 определяется у половины здоровых пациентов, L3 есть у всех, L2 не определяется в физиологических условиях.

Прогноз и исход острого панкреатита

- * Среди лабораторных показателей неблагоприятного прогноза заболевания в процессе интенсивной терапии наиболее информативными у больных в возрасте свыше 55 лет являются:
- лейкоцитоз выше 16х109/л;
- снижение гематокрита более чем на 10%;
- уровень глюкозы крови выше 11,1 ммоль/л;
- * увеличение в сыворотке концентрации лактата более чем в 2 раза;
- * повышение активности ЛДГ в сыворотке крови более чем в 4 раза;
- * повышение активности AcAT более чем в 6 раз по сравнению с нормой при снижении коэффициента де Ритиса ниже 0,7;
- * повышение уровня мочевины крови свыше 17 ммоль/л при снижении концентрационного коэффициента по креатинину ниже 30;
- дефицит ОЦК более 1500 мл;
- снижение уровня кальция плазмы крови ниже 2 ммоль/л;
- * дефицит оснований менее 4 ммоль/л;
- снижение парциального давления кислорода в артериальной крови менее 60 мм рт. ст.

Вопросы?