

Лабораторные методы исследования иммунной системы при иммунодефицитных состояниях и аутоиммунных заболеваниях

План лекции

- Определение показателей клеточного иммунитета при иммунодефицитных состояниях
- Лабораторные исследования при аутоиммунных заболеваниях
- Определение общего и специфических IgE

Комплексное исследование иммунного статуса

- Основным принципом оценки результатов комплексного исследования иммунного статуса у больного является количественная и функциональная оценка всех его звеньев антиген неспецифических и антигенспецифических факторов и их сравнение с нормальными величинами.
- * Определение параметров иммунной системы при различных патологических состояниях дает возможность разделить последние на три главные группы:
 - * 1) без существенных изменений в иммунном статусе;
 - * 2) с недостаточностью иммунной системы (иммунодефициты);
 - * 3) с гиперактивацией иммунокомпетентных клеток (аутоиммунитет, аллергия).

Иммунодефициты. Определение.

* Термином «иммунодефициты» обозначают нарушения нормального иммунологического статуса, обусловленные дефектом одного или нескольких механизмов иммунного ответа.

* Наиболее часто встречающееся нарушение иммунной системы

Эпидемиология иммунодефицитов (1)

- Согласно Регистрам Швейцарии (1993) и Норвегии (2000), распространенность первичных иммунодефицитов среди населения в среднем составляет 1:10000 человек за исключением бессимптомного дефицита IgA, который встречается с частотой 20-40:10000 человек. По данным Фонда иммунодефицитов США (1999), частота данной патологии составляет 1:5000 человек.
- * Около 40% зарегистрированных случаев первичного иммунодефицита составляют генетически детерминированные синдромы (агаммаглобулинемия, связанная с X-хромосомой, хроническая гранулематозная болезнь, тяжелая комбинированная иммунная недостаточность; синдром ДиДжорджи), которые могут быть выявлены у детей раннего возраста.

Эпидемиология иммунодефицитов (2)

- Дефекты с преимущественным поражением гуморального звена иммунитета составляют около 60% от всех ПИД.
- Частота встречаемости первичных иммунодефицитов по гуморальному типу варьирует в зависимости от выявленного дефекта:
 - * селективный дефицит IgA 1:300-1:700;
 - * Общая вариабельная иммунная недостаточность 1:7000-1:200000 – нарушение передачи сигнала от Т к В клеткам
 - * Х-сцепленная агаммаглобулинемия -1:50000- 1 000 000.
- * В 80% случаев возраст пациентов к моменту постановки диагноза не превышает 20 лет.
- * 70% приходится на мужчин, поскольку большинство синдромов связаны с X- хромосомой.

Иммунодефициты. Классификация (1).

- Различают первичные и вторичные иммунодефициты.
- В качестве первичных выделены такие состояния, при которых нарушение иммунных механизмов (продукция иммуноглобулинов и/или Т-лимфоцитов) часто связано с генетическим блоком.
- * Вторичные иммунодефициты характеризуются приобретенным дефектом иммунной системы, выражающимся в неспособности организма осуществлять реакции клеточного и/или гуморального иммунитета. Дефекты иммунной системы при вторичных иммунодефицитах могут возникать в различных звеньях: Т- и В-лимфоцитарном, макрофагальном, гранулоцитарном, комплементарном под влиянием различных стрессовых и патогенных агентов и воздействий

Причины вторичных иммунодефицитов

- Многие заболевания, химиотерапевтические, физические и другие методы лечения, иные воздействия вызывают изменения иммунореактивности.
- * Вторичные иммунодефициты наиболее часто выявляются при инфекциях, СПИДе, при тяжелых ожогах, уремии, злокачественных новообразованиях, при проведении иммуносупрессивной и лучевой терапии.
- * Изменения иммунореактивности, временно возникающие при различных воздействиях и заболеваниях и спонтанно исчезающие при устранении индуцирующих факторов, не являются иммунодефицитами. Их следует считать временной иммуномодуляцией. Однако граница между вторичными иммунодефицитами и временным нарушением иммунореактивности относительна и условна.

Классификация вторичных иммунодефицитов (Д. К. Новиков и В. И. Новикова, 1994)

- 1. Комбинированные иммунодефициты.
- 2. Т-клеточные дефициты.
- 3. Преимущественно В-клеточные дефициты.
- 4. Дефекты естественных киллеров.
- 5. Дефициты макрофагов и гранулоцитов.
- 6. Дефициты системы комплемента.
- 7. Дефициты системы тромбоцитов.

Основные причины вторичных иммунодефицитов

- Прием лекарств (ГКС, цитостатики)
- * Белково-калорийная недостаточность
- * Недостаток в пище микро- и макроэлементов (цинк, селен, медь, железо, витамины A, B6, фолиевая кислота)
- * ВИЧ-инфекция

Иммунодефициты. Классификация (2).

- * В зависимости от уровня нарушений и локализации дефекта различают преимущественно следующие иммунодефициты:
 - * Гуморальные
 - * Клеточные
 - * Иммунодефициты, обусловленные дефектами неспецифической системы резистентности (в частности, системы фагоцитоза)
 - * Комбинированные.

Нарушения гуморального звена иммунитета

- Может проявляться:
 - * в форме общей гипогаммаглобулинемии как дефекта синтеза иммуноглобулинов,
 - * недостаточности антител вследствие обшей потери белка (при нефротическом синдроме, экссудативных процессах) и усиления процессов распада иммуноглобулинов.
 - * Редко может встречаться селективный дефицит различных иммуноглобулинов. Например, при селективных дефицитах IgG отмечают рецидивирующие инфекции верхних дыхательных путей.

Клиника иммунодефицитов

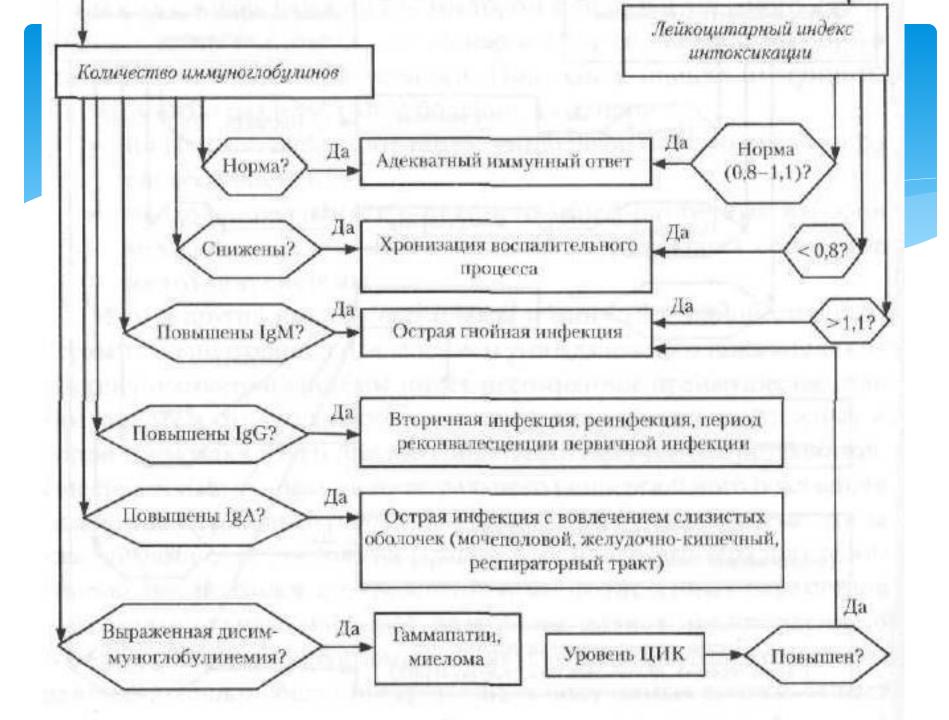
- В-клеточные иммунодефициты повышена чувствительность к пиогенным инфекциям (отит, синусит, бронхоэктатическая болезнь)
- * Т-клеточные иммунодефициты повышена чувствительность к оппортунистическим инфекциям (кандидоз, пневмоцистоз)
- * Дефицит белков системы комплемента приводит к заболеваниям иммунных комплексов, повышенной чувствительности к нейссериям (возбудители гонореи, менингита), наследственному ангионевротическому отеку
- * Дефициты фагоцитоза приводят к генерализованным бактериальным инфекциям

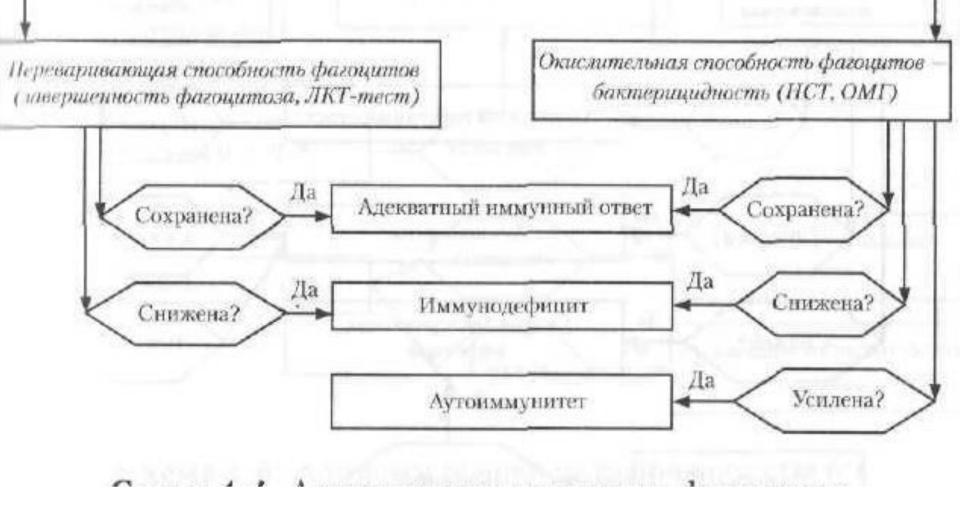
Нарушения Т-клеточного звена иммунитета

- Больные подвергаются особой опасности поражения вирусными и грибковыми инфекциями (кандидоз, ветряная оспа, герпес), могут быть осложнения после вакцинации БЦЖ.
- * Обычно выявляется снижение количества и функциональной активности лимфоцитов периферической крови: в одних случаях снижается митогенная активация ФГА, в других уменьшается выработка лимфоцитов.
- * Содержание В-лимфоцитов может быть несколько увеличено, а Т-лимфоцитов— снижено.
- * Нередко количество Т-лимфопитов и соотношение их популяций может находиться в пределах нормы, поэтому в диагностике клеточной иммунологической недостаточности приоритет должен отдаваться методам исследования, оценивающим функциональную полноценность лимфоцитов

Комбинированные иммунодефициты

- Среди первичных иммунодефицитов наиболее часто встречаются комбинированные формы.
- * При тяжелом комбинированном иммунодефиците резко снижается активность естественных киллеров.


Алгоритм оценки клеточного звена иммунитета при иммунодефицитах

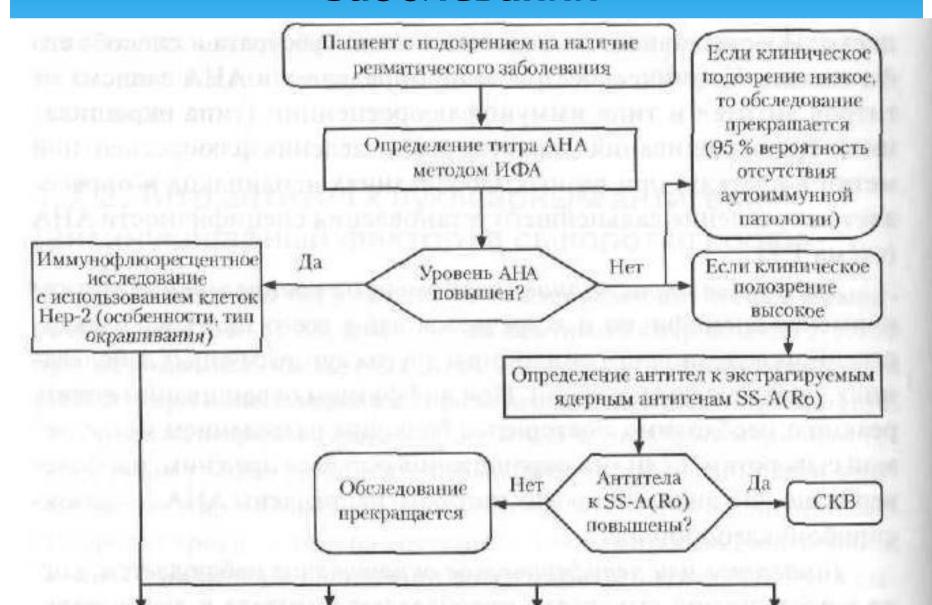

Алгоритм оценки гуморального звена иммунитета при иммунодефицитах

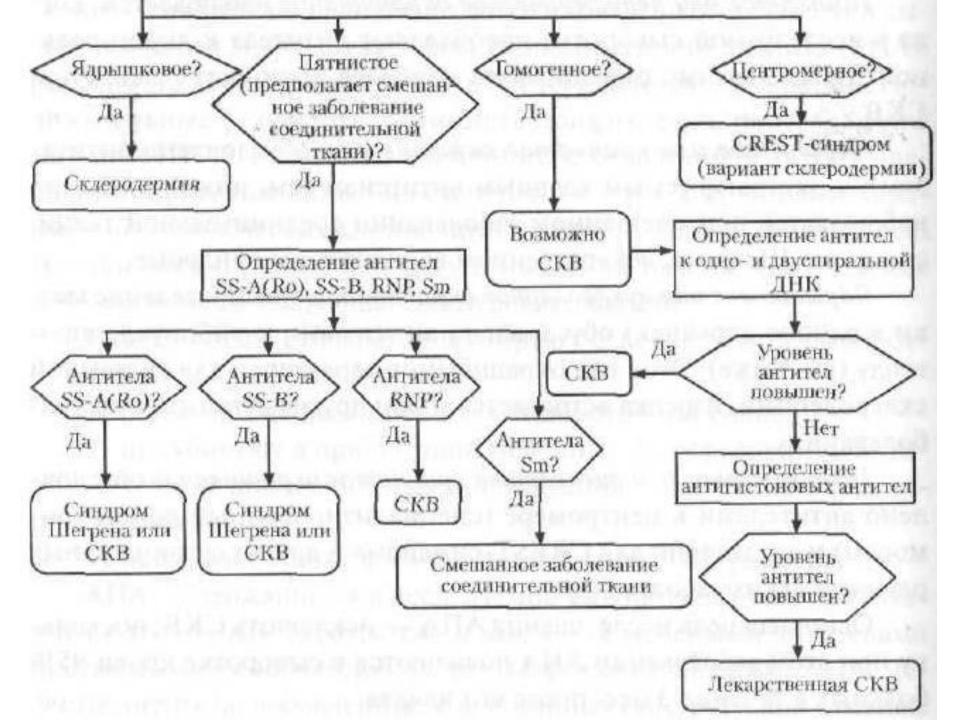
Алгоритм оценки системы фагоцитоза при иммунодефицитах

Общий иммуноглобулин Е

- Время полужизни IgE 3 дня в сыворотке крови и 14 дней на мембранах тучных клеток и базофилов.
- Иммуноглобулин Е ответствен за аллергию немедленного типа
 самый частый тип реакций
- * Обладают способностью к быстрой фиксации на клетках кожи, слизистых оболочек, тучных клетках и базофилах, поэтому в свободном виде IgE присутствует в плазме крови в ничтожных количествах.
- * При повторном контакте с антигеном (аллергеном) происходит дегрануляция клеток, высвобождение вазоактивных факторов, приводящих к анафилаксии.
- * Также принимает участие в защитном противогельминтном иммунитете, что обусловлено существованием перекрестного связывания между IgE и антигеном гельминтов

Аллергоспецифический IgE.


- При постановке диагноза аллергии недостаточна констатация повышения общего IgE в крови. Для поиска причинного аллергена необходимо выявлять специфические антитела класса IgE против него.
- В настоящее время лаборатории в состоянии определять
 аллергенспецифический IgE в сыворотке крови к более чем 600
 аллергенам, наиболее часто вызывающим аллергические
 реакции у человека.


LE-клетки

Клетки красной волчанки (LE-клетки) в крови в норме отсутствуют

- * Служат морфологическим проявлением иммунологического феномена, характерного для СКВ (частота выявления 40-95%).
- * Образуются в результате фагоцитоза нейтрофильными лейкоцитами (реже моноцитами) ядер клеток, содержащих деполимеризованную ДНК.
- * Фагоцитируемая субстанция представляет собой иммунный комплекс, состоящий из волчаночного фактора (антинуклеарный фактор антитела класса IgG к ДНК-гистоновому комплексу), остатков ядра лейкоцитов и комплемента.
- * Отрицательный результат исследования не исключает возможности наличия данного заболевания.

Алгоритм диагностики ревматических заболеваний

Вопросы?