Молекулярно-генетические методы диагностики наследственных болезней

План лекции

- Молекулярные основы наследственности
- Картирование генома человека
- Рестрикция ДНК
- Типы и классификация рестриктаз
- Рестрикционный анализ молекул ДНК
- Молекулы нуклеиновых кислот, используемых в ДНК-диагностике
- Методы выделения ДНК и РНК из эукариотических клеток
- Методы получения ДНК и РНК зондов

Классификация наследственных заболеваний (1)

Все наследственные болезни принято разделять на три большие группы

- * моногенные;
- * полигенные, или мультифакториальные, при которых мутации нескольких генов и негенетические факторы взаимодействуют;
- * хромосомные нарушения, или аномалии в структуре или количестве хромосом.

Заболевания, относящиеся к двум первым группам, часто называют генетическими, а к третьей — хромосомными болезнями

Хромосомные болезни

- Могут быть обусловлены:
 - * количественными аномалиями хромосом (геномные мутации),
 - * структурными аномалиями хромосом (хромосомные аберрации).
- * Клинически почти все хромосомные болезни проявляются нарушением интелектуального развития и множественными врождёнными пороками, часто несовместимыми с жизнью

Моногенные болезни

- * Развиваются вследствие повреждения отдельных генов.
- * К моногенным болезням относятся большинство наследственных болезней обмена (фенилкетонурия, галактоземия, мукополисахаридозы, муковисцидоз, АГС, гликогенозы и др.).
- * Моногенные болезни наследуются в соответствии с законами Менделя и по типу наследования могут быть разделены на
 - * аутосомно-доминантные,
 - * аутосомно-рецессивные и
 - * сцепленные с хромосомой Х.

Мультифакториальные болезни

Являются полигенными, для их развития необходимо влияние определённых факторов внешней среды.

- * Общие признаки мультифакториальных заболеваний:
 - * Высокая частота среди населения.
 - * Выраженный клинический полиморфизм.
 - * Сходство клинических проявлений у пробанда и ближайших родственников.
 - * Возрастные и половые различия.
 - * Более раннее начало и некоторое усиление клинических проявлений в нисходящих поколениях.
 - * Вариабельная терапевтическая эффективность ЛС.
 - * Несоответствие закономерностей наследования законам Менделя.

Врожденные заболевания и пороки развития

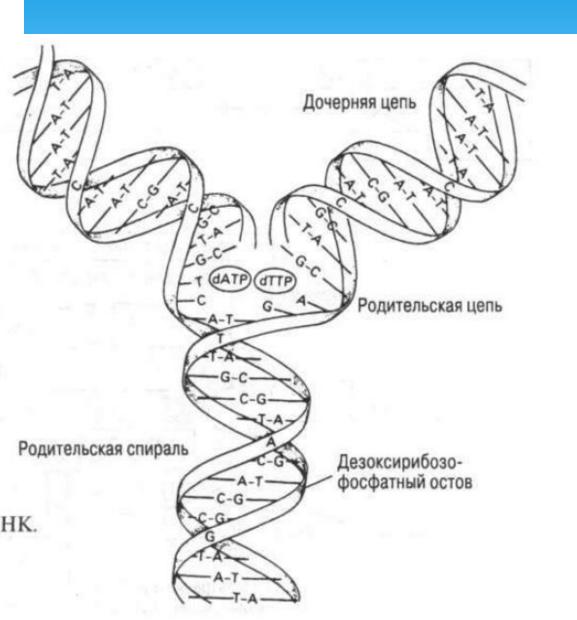
- К наследственным болезням нельзя относить те врождённые заболевания, которые возникают в критические периоды эмбриогенеза под воздействием неблагоприятных факторов внешней среды и не передаются по наследству (врождённые пороки сердца, алкогольный синдром плода и т.д.)
- * По данным ВОЗ аномалии развития присутствуют у 2,5% всех новорождённых; 1,5% из них обусловлены действием неблагоприятных экзогенных факторов во время беременности, остальные имеют преимущественно генетическую природу.
- Разграничение наследственных заболеваний и пороков
 развития, которые не передаются по наследству, имеет очень
 важное практическое значение для прогнозирования потомства
 в данной семье.

Генетические исследования. Актуальность

- * Прослеживается увеличение доли наследственных болезней в общей структуре заболеваний.
- * В связи с этим возрастает роль генетических исследований в практической медицине.
- * Без знания медицинской генетики невозможно эффективно проводить диагностику, лечение и профилактику наследственных и врождённых заболеваний.

Роль наследственных факторов при заболеваниях человека

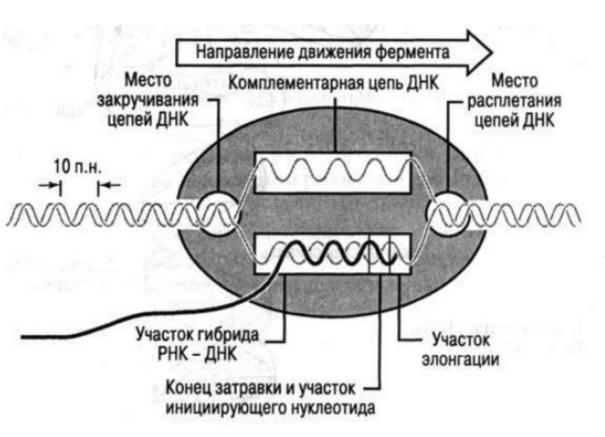
- Моногенные болезни их происхождение которых полностью определяется генетическими факторами, наследование которых подчиняется основным правилам законов Менделя, а воздействие внешней среды может оказывать влияние лишь на интенсивность тех или иных проявлений патологического процесса (на его симптоматику).
- * Мультифакториальные заболевания наследственность является причинным фактором, но для его проявления необходимы определённые воздействия внешней среды, их наследование не подчиняется законам Менделя
- * Болезни, возникновение которых определяется в основном воздействием внешней среды (инфекции, травмы и т.п.); наследственность может лишь влиять на некоторые количественные характеристики реакции организма, определять особенности течения патологического процесса.


Классификация геномных технологий

- Сканирующие
- Скринирующие
- Функциональные
- Хромосомные (картирующие)

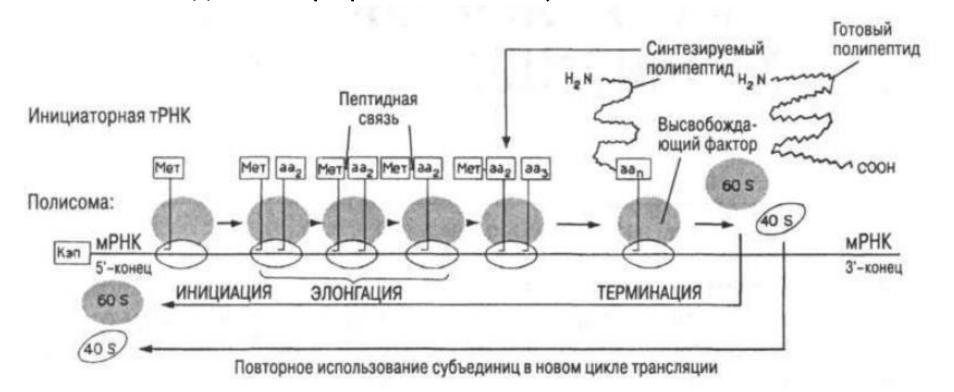
Основные термины

- Геном вся информация о последовательности ДНК отдельного организма/клетки
- Эпигеном вся информация об устойчивых модификациях ДНК, влияющих на функцию ДНК
- Транскриптом вся информация в РНК в данной клетке/ткани (динамическая информация об экспрессии генов)
- Метагеном вся информация в ДНК сообщества организмов
- SNP однонуклеотидный полиморфизм мутация в виде замены 1 буквы в генетическом коде
- Indel мутация в виде вставки (insertion) или потери (deletion) участка ДНК
- Экзон участок ДНК (гена), кодирующий определенный белок или его часть
- Интрон участок ДНК, не кодирующий определенный белок, но связанный с ним


Репликация

Расхождение
молекул ДНК,
каждая из которых
служит матрицей для
синтеза дочерней
цепи

Транскрипция


Синтез молекулы РНК на основе одной из цепей ДНК. Транскрипция запускается промотором, заканчивается на терминальных последовательностях гена

- В процессе участвуют различные регуляторные белки, обеспечивающие начало и окончание транскрипции, свойства конечного продукта
- Имеются различия в одном азотистом основании (урацил РНК вместо тимина ДНК)

Трансляция

- * Генетическая информация, закодированная в кодонах (триплеты азотистых оснований), транслируется в аминокислотную последовательность
- * Осуществляется на рибосомах
- * Генетический код состоит из 64 кодонов, из которых 3 являются нонсенс-кодонами (терминальными), остальные смысловыми

Молекулярно-генетические методы. Сфера применения.

- Методы ДНК-технологии используют для выяснения локализации в той или иной хромосоме мутантного гена, ответственного за происхождение определённых форм наследственной патологии.
- * Так как ген представляет собой участок ДНК, а мутация генов повреждение первичной структуры ДНК, то, зондируя препараты метафазных хромосом больного с наследственным заболеванием, удаётся установить локализацию патологического гена.
- * Методы молекулярной генетики создают возможности для диагностики болезней на уровне изменённой структуры ДНК, они позволяют выяснять локализацию наследственных нарушений.
- * Молекулярно-генетические методы могут выявить мутации, связанные с заменой даже одного-единственного основания.

Получение ДНК зондов

- Используют метод клонирования генов.
- Фрагмент ДНК, соответствующий какому-либо гену или участку гена, встраивают в клонирующую частицу, как правило, бактериальную плазмиду (кольцевая внехромосомная ДНК, присутствующая в клетках бактерий и несущая гены устойчивости к антибиотикам), и затем бактерии, имеющие плазмиду со встроенным человеческим геном, размножают.
- * Благодаря процессам синтеза в плазмиде удаётся получить миллиарды копий человеческого гена или его участка
- * Полученные копии ДНК, меченные радиоактивной меткой или флюорохромами, используют в качестве зондов для поиска комплементарных последовательностей среди молекул ДНК.
- * В настоящее время существует множество разновидностей методов с использованием ДНК-зондов для диагностики генных мутаций.

Саузерн-блоттинг

- * Разработан Э. Саузерном и Р. Дэйвисом в 1975 г.
- * Основной метод, с помощью которого в настоящее время выявляют гены определённого заболевания.
- * Для этого ДНК из клеток больного экстрагируют и обрабатывают одной из рестрикционных эндонуклеаз (или несколькими).
- * Полученные фрагменты подвергают электрофорезу, который позволяет разделить их по размеру.
- * Затем фрагменты переносят (перепечатывают) на нитроцеллюлозный фильтр, на который наслаивают меченный радиоактивной меткой зонд.
- * Зонд связывается только с комплементарной последовательностью.
- * Затем методом авторадиографии определяют положение искомого фрагмента геномной ДНК на электрофореграмме.

Гибридизация in situ

- * Процедуру гибридизации можно проводить не только на геле, на фильтрах или в растворе, но и на гистологических или хромосомных препаратах.
- * Этот метод носит название гибридизации in situ.
- * Вариант метода, при котором в качестве зондов используют препараты ДНК или РНК, меченные флюорохромами, называется FISH (fluorescein in situ hybradization).
- * Меченный ДНК-зонд наносят на препараты дифференциально окрашенных и подготовленных для гибридизации (денатурированных) метафазных хромосом.
- * Предварительная обработка хромосом применяется для облегчения доступа зонда к геномной ДНК.
- * Места локализации последовательностей ДНК, комплементарных используемому ДНК-зонду, можно непосредственно выявлять при микроскопии в виде характерных точек над соответствующими участками определённых хромосом.

Рестриктазы

Рестриктазы, или рестрикционные эндонуклеазы, - ферменты, обладающие эндонуклеазной активностью и участвующие в системе распознавания и защиты «своих» и уничтожения чужеродных ДНК in vivo. Известно более 500 различных типов рестриктаз бактериального происхождения, каждая из которых узнает свою специфическую последовательность в двухцепочечной молекуле ДНК. Длина распознаваемого участка варьирует от 4 до 12 нуклеотидов. Обнаружив эту последовательность, рестриктаза разрезает молекулу ДНК на фрагменты в местах ее локализации, называемых сайтами рестрикции. Чем больше сайтов рестрикции, тем больше образуется рестрикционных фрагментов. Длина рестрикционных фрагментов зависит от распределения сайтов рестрикции в исходной молекуле ДНК: образующиеся фрагменты тем короче, чем чаще расположены эти сайты.

Методы выявления мутаций

- * Секвенирование ДНК или отдельных экзонов дает точные характеристики каждой мутации (замены нуклеотидов, делеции, дупликации и т.д.)
- * ПЦР с последующим электрофорезом определяют мутации, приводящие к изменению длины амплифицированных фрагментов (делеции, инсерции)
- * Количественная ПЦР для выявления протяженных делеций, находящихся в гетерозиготном состоянии
- * Методы выявления точковых мутаций
 - * Анализ конформационного полиморфизма одноцепочечной ДНК (SSCP)
 - * Метод денатурирующего градиентного гель электрофореза (DGGE)
 - Гетеродуплексный анализ (НА)
 - * Химическое расщепление некомплементарных сайтов (СМС)

Секвенирование

- * Последний этап анализа предварительно исследованного более простыми методами фрагмента ДНК
- * Представляет собой определение нуклеотидной последовательности ДНК путем получения комплементарных молекул ДНК, отличающихся на одно основание
- * Существует 2 основных метода:
 - * Метод Максама-Гилберта (основан на химическом расщеплении ДНК по одному основанию)
 - Метод Сангера (дидезокси-метод) более прост, используется чаще

Карта генома

Карта генома — это схема, определяющая хромосомную принадлежность и взаиморасположение (порядок и расстояние) генов и других компонентов генома. Карты генома можно классифицировать по объему предоставляемой информации (разрешающей способности) и методам построения. В зависимости от разрешающей способности выделяют мелкомасштабные карты (с низким уровнем разрешения), например, картина дифференциального окрашивания хромосом или генетические карты с расстоянием между соседними маркерами в 7—10 миллионов п.н. (мегабаз — Мб), и крупномасштабные, в идеале — полная последовательность нуклеотидов.

Основные стратегии картирования генов

- * Прямая генетика «от белка к гену» функциональное картирование
 - Первыми были картированы гены, продукты которых изучены (белки)
- * Обратная генетика «от гена к белку» и от «нормального гена к мутантному аллелю»
 - * Направление появилось при изучении заболеваний, природа которых неизвестна.
 - * Варианты метода кандидатное, позиционное и кандидатно-позиционное картирование

Принципы наследования признаков

- В 1865 г. Грегор Мендель, основываясь на результатах своих опытов с садовым горохом, сформулировал основные принципы наследования признаков.
- * Единицы наследственности дискретны, встречаются парами и могут существовать в альтернативных формах. Позже (1905 г.) эти единицы назвали генами, а варианты одного гена -аллелями.
- * В гамету попадает только один ген из каждой пары.
- * Пары генов образуются независимо друг от друга, поэтому результатом единственного генетически значимого скрещивания будут все возможные генетические комбинации в том случае, если число потомков достаточно велико
- Последнее заключение справедливо только для пар генов, находящихся на разных хромосомах или по крайней мере на разных концах одной хромосомы. В экспериментах Менделя ни при одном из скрещиваний не затрагивались такие пары генов, которые находились на одной хромосоме близко друг от друга. В противном случае он заметил бы, что эти гены наследуются не независимо, как сейчас говорят, они сцеплены.

Сцепленные гены и расстояние между генами

- * Все гены любой хромосомы должны передаваться в половые клетки в виде неразделимых блоков, не образуя в процессе мейоза новых генетических комбинаций на хромосомах
- * Однако в большинстве случаев сцепление является неполным. При мейозе происходит обмен (рекомбинация, кроссовер) между генными сайтами (локусами), и создаются новые комбинации генов.
- Поскольку обычно рекомбинация происходит тем чаще, чем больше расстояние между двумя специфическими генными локусами, частоту рекомбинаций можно использовать как меру расстояния (генетического расстояния) между двумя генами.

Расстояние между сцепленными генами и частота рекомбинаций

- Расстояние между локусами отражает лишь частоту рекомбинаций и не эквивалентно точному физическому расстоянию.
- * Однако, сравнивая физические и генетические карты хромосом, удалось установить соответствие между частотой рекомбинаций и числом нуклеотидных пар ДНК.
- * В качестве единицы при картировании используется 1 сантиморганида (сМ), величина, равная частоте рекомбинаций 1%, что для человека соответствует примерно 10⁶ пар нуклеотидов (п. н.).

Вопросы?