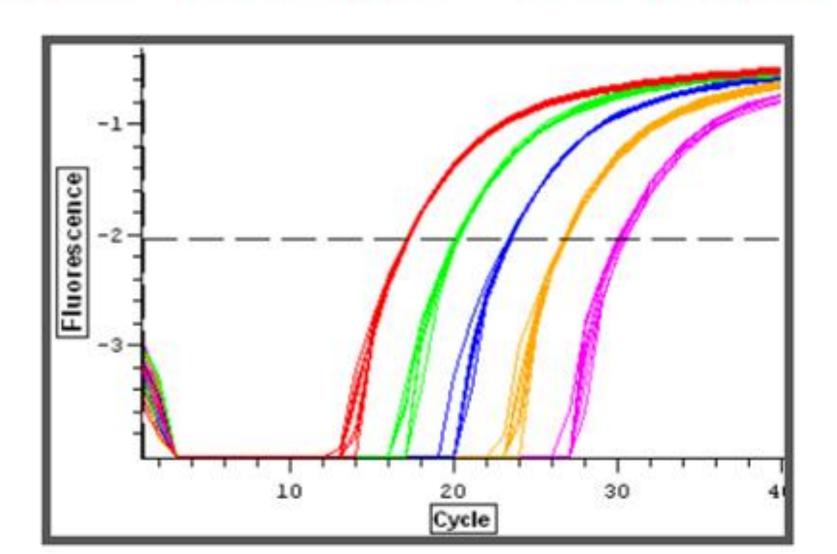


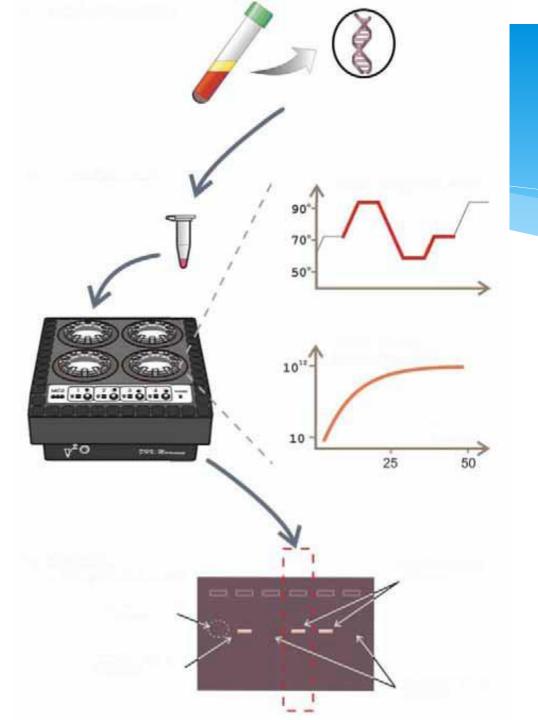
Полимеразная цепная реакция

План лекции

- ПЦР с амплификацией праймеров, последующим электрофорезом
- ПЦР в реальном времени
- Чипы в диагностике наследственных и приобретенных заболеваний

История ПЦР


- * Основные принципы использования праймеров для получения копий ДНК впервые были описаны *Кleppe* с соавт. в 1971 году. Однако тогда еще не была продемонстрирована основная черта ПЦР экспоненциальное увеличение количества копий фрагмента исходной ДНК как результат реакции.
- * В 1983 году сотрудник фирмы «Cetus» Kary Mullis предложил метод, ставший в дальнейшем известным как полимеразная цепная реакция.
- * Этому открытию сопутствовало развитие некоторых технологий появление приборов, позволяющих автоматически синтезировать олигонуклеотиды. В тот же период были обнаружены уникальные микроорганизмы, ставшие источниками термостабильной ДНК-полимеразы
 - В настоящее время предложены различные модификации ПЦР, показана возможность создания тест-систем для обнаружения микроорганизмов, выявления точечных мутаций, описаны десятки различных применений метода.


Основные сферы использования ПЦР

- * Диагностика инфекционных заболеваний;
- * Диагностика онкологических заболеваний;
- * Диагностика генетических заболеваний;
- * Идентификация личности;
- * Диагностика патогенов в пище.

Эффект плато

 $Product_T = (Template_0)2^{3.32} = (Template_0)10$

Стадии ПЦР

Исследование состоит из

- 3 стадий:
- 1. Выделение материала
- 2. Амплификация
- 3. Детекция

Выделение ДНК

ДНК может быть выделена из любого биологического материала: из крови и других жидкостей организма, различных типов тканей и клеток, содержащих ядра. У человека ДНК чаще всего выделяют из лейкоцитов крови. Процесс выделения ДНК состоит из нескольких этапов: быстрый лизис клеток, удаление фрагментов клеточных органелл и мембран, ферментативное разрушение и экстрагирование белков, осаждение молекул ДНК в этаноле с последующим их растворением в буферном растворе. Оценку качества выделенной ДНК проводят на основании измерения оптической плотности раствора ДНК в области белкового и нуклеинового спектров поглощения. В чистых образцах ДНК соотношение A(260)/A(280) > 1,8; где A(260) и А(280) - оптическая плотность раствора при длине волны 260 и 280 нм, соответственно.

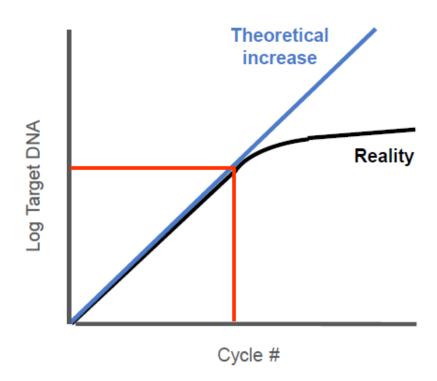
Аппаратное обеспечение амплификации

- * Важным фактором воспроизводимости реакции амплификации является приборное обеспечение.
- * Кроме надежности амплификатора и точности поддержания температур следует упомянуть о таком важном качестве прибора, как использование «активного регулирования», позволяющего добиваться достижения нужной температуры реакционной смеси внутри пробирки в значительно более короткие сроки, чем при обычном регулировании.
- * Тем самым, сокращается время реакции (в 1,5-2 раза); увеличивается время сохранения активности Таq-полимеразы, что позволяет увеличить количество циклов амплификации, снизить риск неспецифического отжига праймеров, а следовательно, повысить чувствительность и специфичность реакции.

Приборы для амплификации

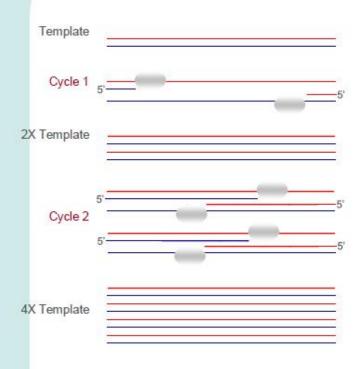
- * К приборам такого класса следует отнести модели амплификаторов «PCR System 2400» или «Model 9600» (Perkin-Elmer, США), «TouchDown» (HyBaid, Великобритания), «PTC 200» (МЈ Research, США), «Терцик» (НПФ ДНК-Технология, Россия).
- * При использовании приборов с «активным регулированием» следует учитывать тип ПЦР-пробирок и строго придерживаться рекомендаций фирм-изготовителей.
- * Это объясняется тем, что при высоких скоростях изменения температуры минимальные отличия в конфигурации гнезд амплификатора и формы конуса ПЦР-пробирки могут сводить на нет преимущества «активного регулирования» и приводить к снижению чувствительности реакции из-за температурных погрешностей, связанных с ухудшением теплового контакта.

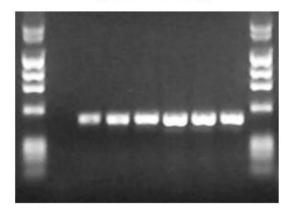
Амплификация РНК


- * Необходимо для выявления РНК-вирусов (гепатит С, грипп и т.д.). В их жизненных циклах отсутствует промежуточная фаза превращения в ДНК.
- * Для перевода РНК в форму ДНК используют фермент обратную транскриптазу (из Avian myeloblastosis virus и Moloney murine leukemia virus).
- * Эти ферменты термолабильны (могут быть использованы при температуре не выше 42°С). При такой температуре молекулы РНК легко образуют вторичные структуры, эффективность реакции заметно снижается и по разным оценкам приблизительно равна 5%.
- * Начинают использовать термостабильную полимеразу, полученную из микроорганизма Thermus Thermophilus,
- * После проведения реакции обратной транскрипции полученные молекулы кДНК могут служить мишенью для проведения ПЦР.

Детекция продуктов ПЦР – чаще качественный метод

В традиционной ПЦР нет прямой зависимости между количеством ДНК в начале и в конце реакции, т.к. сигнал не увеличивается бесконечно, а выходит на плато.


Узкий динамический диапазон электрофоретического анализа Проводить количественный анализ по ПЦР по конечной точке не совсем корректно


Традиционная ПЦР

Амплификация ДНК с детекцией по конечной точке методом электрофореза

30-40 cycles

End-point analysis

Качественный метод Позволяет получить ответ «да» или «нет»

Люминесцентная детекция

Анализатор «АЛА-1/4»

Рассчитан на выявление до 4 мишеней в одной пробирке. Позволяет регистрировать флуоресцентный сигнал образцов непосредственно после проведения ПЦР через стенку пробирок.

Термоциклер Rotor-Gene

Система детекции SFX -96

Проблема контаминации в ПЦР лаборатории

- Контаминация попадание из внешней среды в реакционную смесь специфических и неспецифических молекул ДНК, способных служить мишенями в реакции амплификации и давать ложноположительные или ложноотрицательные результаты
- * Такими мишенями могут быть продукты реакции, попадающие во внешнюю среду на этапе детекции из пробирок, в которых успешно прошла амплификация, либо специфическая ДНК из образцов на этапе пробоподготовки.

Эффективность борьбы с контаминацией.

- Ни одна биологическая или химическая реакция не идёт со 100% эффективностью и, соответственно, после инактивации продуктов амплификации из миллиардов копий амплифицированного фрагмента хотя бы несколько останутся целыми, что существенно снижает ценность такого подхода.
- * Всегда остается риск кросс-контаминации от образца к образцу в процессе пробоподготовки.
- * Таким образом, оба эти метода лишь в некоторой степени позволяют устранить источник контаминации и не гарантируют от ложноположительных и ложноотрицательных результатов

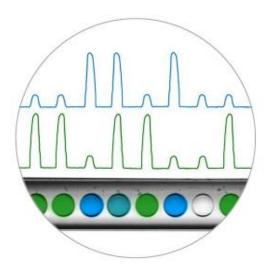
Технические меры борьбы с контаминацией.

- Значительное уменьшение количества циклов реакции (до 25-30 циклов).
- * Каждую серию экспериментов сопровождать отрицательными контролями. В качестве отрицательных контролей рекомендуется использовать воду из комнаты пробоподготовки (после каждого десятого клинического образца желательно обрабатывать вместо биологического образца пробирку с водой).
- * Все реактивы рекомендуется хранить разлитыми на отдельные порции (аликвоты).
- * При выявлении контаминации обработка помещений раствором ДП-2Т или 0,1М HCl
- * Использование УФО
- * Организация помещений ПЦР лаборатории

8. Рабочая зона 4-2.

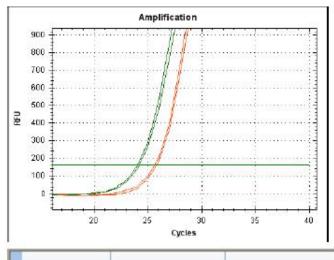
ПЦР real-time принцип

- Результат ПЦР в реальном времени можно регистрировать в процессе реакции, в каждый момент времени.
- * Основана на количественной детекции флюоресцентного сигнала, который увеличивается пропорционально количеству ПЦР-продукта.
- Возможно получение количественного результата

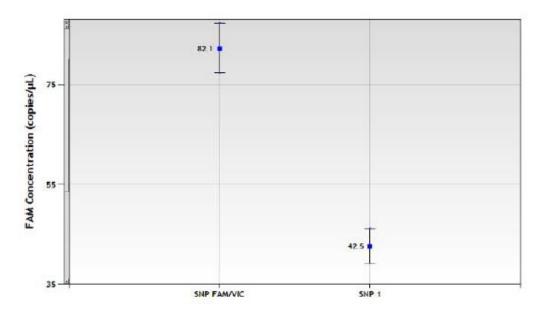

Капельный цифровой ПЦР это ПЦР 3-го поколения

3-е

классический ПЦР качественный


ПЦР в режиме реального времени относительно количественный

капельный диджитал ПЦР - высокоточно количественный



Детекция небольших отличий в концентрации ДНК-мишени

Измерение двукратное изменения в концентрации методом реал-тайм ПЦР Измерение двукратное изменения в концентрации методом капельного цифрового ПЦР

Content 💠	Cq	♦ Cq Str	d. Dev 众
Unkn-14	26.	99	0.110
Unkn-14	26.	84	0.110
Unkn-15	25.	47	0.115
Unkn-15	25.	31	0.115

SNP 1: 82.1 копий

SNP 2: 42.5 копий

Преимущества цифровой ПЦР

- * Отсутствие калибровочной кривой
- * Высокая чувствительность, точность и воспроизводимость при низких концентрациях ДНК
- * Определение редких ДНК мишеней в присутствии большого количества ДНК «дикого типа»
- Эффективность ПЦР оказывают минимальное влияение на результат
- * Область применения:
 - * детектирование минорных генов в присутствии высоких концентраций «дикой» ДНК
 - * выявление низких концентраций мишени,
 - * работа с образцами, содержащими ингибитор

ДНК-микрочип

- * Технология, используемая в молекулярной биологии и медицине.
- * Представляет собой множество небольших одноцепочных молекул ДНК-зондов, которые ковалентно пришиты к твёрдому основанию.
- * Каждый такой зонд имеет строго определённую последовательность нуклеотидов и место на микрочипе.
- * Одинаковые зонды располагаются вместе, образуя сайт микрочипа.
- * На современных микрочипах можно полностью расположить целый геном, каждый известный ген которого будет являться зондом

ДНК-микрочип. История.

- * Технология ДНК-микрочипов берёт начало от Саузерн блоттинга методики, в которой фрагментированную ДНК переносят на подходящий носитель и затем с помощью зонда с известной нуклеотидной последовательностью определяют содержание целевой последовательности в образце.
- * Впервые набор различных ДНК, объединённых в чип, был использован в 1987 году для определения особенностей регуляции экспрессии генов интерферонами.
- * Ранние ДНК-микрочипы были сделаны путём «раскапывания» микроколичеств кДНК на фильтровальную бумагу.
- * Также использовали ДНК зонды в гелевых пластинках
- * Использование миниатюрных чипов для определения особенностей экспрессии генов было осуществлено в 1995 году и полный эукариотический геном (Saccharomyces cerevisiae) был размещён на микрочипе в 1997 году

ДНК чипы. Область применения

- * Анализ экспрессии генов преобладающее направление
- * Анализ связывания транскрипционных факторов
- * Генотипирование выявление полиморфизма генов

Вопросы?