Волгоградский государственный медицинский университет Кафедра микробиологии, вирусологии, иммунологии с курсом клинической микробиологии

Возбудители особо опасных зооантропонозных инфекций — сибирской язвы, чумы, бруцеллёза и туляремии. Характеристика возбудителей, этиопатогенез заболеваний. Лабораторная диагностика.

Специфическая профилактика и лечение. Лектор:

Доцент кафедры микробиологии, вирусологии, иммунологии, к.м.н. Михайлова Людмила Викторовна Сибирская язва — острая зоонозная инфекция, проявляющаяся образованием кожного карбункула или возникновением тяжелой геморрагической пневмонии, диареи и сепсиса.

Характеристика возбудителя:

• Семейство: Bacillaceae

• Род: Bacillus

• Вид: Bacillus anthracis

Морфологические и тинкториальные свойства:

крупная грамположительная палочка с обрубленными концами, неподвижна. Располагается длинными цепочками (стрептобацилла). Во внешней среде образует центральную спору. В макроорганизме и на специальных питательных средах образует капсулу.

Факторы патогенности:

- **Капсула** полипептид, участвует в адгезии микроба на чувствительных клетках макроорганизма; антифагоцитарная активность.
- Экзотоксин состоит из трех термолабильных компонентов:
- 1) протективный АГ, который взаимодействует с мембранами клеток и опосредует проявление активности других компонентов.
- 2) *Петальный токсин*, проявляет цитотоксический эффект и вызывает отек легких.
- 3) Отёчный фактор, который вызывает развитие отеков различных тканей.
- По отдельности компоненты не способны проявлять токсическое действие. Компоненты токсина представлены белками или липопротеинами.
- Ферменты: лецитиназа.

ЭПИДЕМИОЛОГИЯ

Источник инфекции — больные домашние животные: крупный рогатый скот, лошади, ослы, овцы, козы, олени, верблюды, свиньи, у которых болезнь протекает в генерализованной форме. Распространение сибирской язвы территориально привязано к почвенным очагам — хранилищам возбудителей.

- Первичные почвенные очаги образуются в результате инфицирования почвы выделениями больных животных на пастбищах, в местах их стойлового содержания, в местах захоронения трупов (скотомогильники).
- Вторичные почвенные очаги возникают путем смыва и заноса спор на новые территории дождевыми, талыми и сточными водами.

Заражение может произойти при выделывании шкур больных животных, разделке их внутренних органов, при употреблении мясных и других пищевых продуктов, через почву, воздух, предметы внешней среды, обсеменённые сибиреязвенными спорами.

Пути передачи:

- Контактно-бытовой (при уходе за животными, выделке кожи и шерсти),
- Аэрогенный (вдыхание пыли, содержащей споры),
- Пищевой (употребление зараженного мяса).

ПАТОГЕНЕ3

• В организм человека возбудитель сибирской язвы попадает через кожу. Микроорганизм внедряется в кожу рук (\approx 50% случаев) и головы (20-30%) случаев), реже – кожу туловища и нижних конечностей. Главным образом страдают открытые участки кожного покрова. Через 2-3 часа после попадания возбудитель размножается в месте проникновения, образуя капсулы и продуцируя экзотоксин, вызывающий плотный отек и омертвение ткани. Из области размножения микроорганизмы по лимфатическим сосудам попадают в регионарные лимфоузлы, а в дальнейшем возбудитель гематогенно распространяется по разным органам.

Больной человек для окружающих не заразен – биологический тупик.

- При инфицировании воздушным путем споры захватываются альвеолярными макрофагами и проникают в медиастинальные лимфоузлы, где микроб начинает размножаться и накапливаться. Поражаются лимфоузлы средостения (геморрагическое воспаление средостения) и бактерии попадают в кровоток, что приводит к вторичной геморрагической сибиреязвенной бронхопневмонии.
- В случае приема зараженного (или недостаточно термически обработанного) мяса споры попадают в подслизистую оболочку и регионарные лимфоузлы, что приводит к кишечной форме заболевания, при которой микробы попадают в кровоток и болезнь переходит в септическую форму.

Схема лабораторной диагностики

Материал	Метод исследования	Результаты
Мокрота, отделяемое, карбункула, отечная жидкость, кровь, фекалии, моча.	 Бактериоскопический. Готовят мазки, окрашивают по Граму. Бактериологический. Исследуемый материал засевают на чашки с МПА и в пробирку с МПБ. Выделяют чистую культуру, с последующей ее идентификацией. 	Грамположительные стрептобациллы, окруженные капсулой. Изучают культуральные свойства возбудителя. Биохимическая активность: Глюкоза +(К), Мальтоза +(К) Желатин +, H ₂ S +, Индол –
	Тест «жемчужного ожерелья»	+
	Проба с бактериофагом.	+

3. Биопроба.

Исследуемый материал вводят подкожно белым мышам.

Павшее животное вскрывают, готовят мазки из крови и внутренних органов, затем делают посевы для выделения чистой культуры возбудителя.

4. Экспресс-диагностика.

а) реакция Асколи ставится для определения зараженности сырья (кожа, мех, шерсть, трупный материал животного).

При положительной реакции Асколи в пробирке идет реакция преципитации в виде белого кольца.

Образцы исследуемого материала измельчают и кипятят 5-10 минут, затем фильтруют и осторожно добавляют в пробирку с сибиреязвенной сывороткой.

б) метод иммунофлюоресценции позволяет выявить капсульные формы Вас. Anthracis в эксудате. Мазки обрабатывают люминисцентной сибиреязвенной сывороткой.

Реакция идет между термостабильным соматическим антигеном и антителами сибиреязвенной сыворотки.

В препаратах под люминисцентным микроскопом наблюдается желто-зеленое свечение возбудителя.

Лечение и профилактика

Для этиотропной терапии применяют антибиотики. Специфическая терапия:

сибиреязвенный иммуноглобулин.

Профилактика:

- 1. Специфическая профилактика: вакцина СТИ (живая вакцина из спор бескапсульного варианта возбудителя), вводится по эпид. показаниям домашним животным и людям.
- 2. *Неспецифическая профилактика:* ветеринарный надзор, сжигание туш павших животных и уничтожение больных особей. Уничтожение продуктов питания, полученных от больных животных.

Обследование в течение 2-х недель людей, находившихся в контакте с больным животным.

Ликвидация очагов инфекции.

Возбудитель чумы

Систематика:

• Семейство Enterobacteriaceae

• Род Yersinia

• Вид Yersinia pestis

Морфологические и тинкториальные свойства:

неподвижная грамотрицательная палочка овоидной формы со вздутой центральной частью ("английская булавка"). Не образует спор. Способна образовывать нежную капсулу.

При окраске метиленовой синькой Леффлера видна биполярность окраски (интенсивная окрашенность по полюсам).

Физиология:

- Тип дыхания аэроб или факультативный анаэроб.
- Тип питания гетеротрофный.
- Психрофил оптимальная температура роста +25-28°C,
- рН среды 6,9-7,2.

Эпидемиология

• Чума - заболевание, характеризующееся природной очаговостью, связанное с пустынным, степным и горным ландшафтом. В очаге эпизоотический процесс поддерживается определёнными видами грызунов, для заражения людей опасны суслики, сурки, крысы, зайцы, верблюды и другие млекопитающие.

Заражение человека происходит следующими путями:

- трансмиссивным (через укусы блох),
- контактным (при разделке туш больных животных),
- аэрогенным (воздушно-капельным),
- реже алиментарным.

В зависимости от способа заражения различают формы:

- бубонную, (реже кожную),
- легочную,
- кишечную,
- септическую.

Лабораторная диагностика

Материал для исследования: пунктат из бубона или его отделяемое, содержимое везикул, пустул, карбункулов, отделяемое язв, мокрота и слизь из носоглотки (при легочной форме), кровь при всех формах болезни, испражнения при

наличии диареи (кишечной форме).

Методы исследования:

- 1) Бактериоскопический,
- 2) Бактериологический,
- 3) Биологический,
- 4) Серологический,
- 5) Кожно-аллергический,
- б) Молекулярно-генетический.

Специфическая профилактика проводится п/к или н/к живой ослабленной вакциной из штамма EV.

Туляремия — острая антропозоонозная природноочаговая инфекционная болезнь, вызываемая Francisella tularensis, характеризующаяся лихорадкой, интоксикацией, поражением кожи и лимфатических узлов (очаги казеозного некроза) с тенденцией к септическому течению с вовлечением в процесс легких и других внутренних органов.

• Возбудитель туляремии — Francisella tularensis, относится к роду Francisella.

Мелкая полиморфная грамотрицательная палочка шаровидной или овоидной формы (размер 0,2-0,7 мкм). В мазках из патологического материала, окрашенных по Романовскому—Гимзе, выявляется нежная капсула слизистой консистенции. Спор не образует, жгутиков не имеет.

Пути заражения:

- 1. Контактным (через поврежденную кожу, слизистую оболочку глаз при контакте с больными грызунами, их трупами или с предметами, зараженными грызунами);
- 2. Воздушно-пылевым (при аспирации пыли, загрязненной выделениями грызунов),
- 3. Алиментарным (при употреблении пищевых продуктов и воды, инфицированных грызунами),
- 4.Трансмиссивным (при укусах инфицированными клещами, комарами, слепнями).

Естественная восприимчивость людей — очень высокая (для человека минимальная инфицирующая доза — одна микробная клетка), однако больной человек эпидемиологической опасности не представляет.

• Инкубационный период — обычно 3-7 дней.

Различают:

- бубонную,
- язвенно-бубонную,
- глазобубонную,
- ангинозно-бубонную,
- абдоминальную,
- легочную,
- генерализованную формы туляремии

Микробиологическая диагностика

Материалом для исследования служат: кровь, пунктат бубона, гной из конъюнктивы, смыв из зева, мокрота, испражнения, кусочки органов из трупов грызунов.

Методы лабораторной диагностики:

бактериологический, биологический, серологические реакции аллергическая проба.

• Биологические пробы и бактериологические исследования по туляремии возможно проводить только в специальных лабораториях особо опасных инфекций.

Профилактика

Специфическая профилактика:

- 1. Живая аттенуированная вакцина (Эльберта-Гайского) из туляремийных бактерий. Ее прививают накожно, однократно, иммунитет не менее 5-7 лет.
- 2. Химическая вакцина.
- 3. Протективный туляремийный антиген.

