Задания для отработки навыков.

Для выполнения Заданий для обработки навыков, необходимо:

- прочитать раздел 4 «Протолитическое равновесие в растворах солей» теоретическая часть;
- выписать основные формулы расчета водородного показателя для буферных растворов и буферная емкость;
- посмотреть примеры выполнения заданий для обработки навыков;
- решить и выписать ответы ситуационных задач, которые будут необходимы вам для выполнения раздела 4 «Протолитическое равновесие в растворах солей» оценочная часть.

Выполнение данной части (раздел 4 «Протолитическое равновесие в растворах солей» практическая часть) рассчитано на 4 академических часа.

Пример 1.

Записать уравнения гидролиза для солей: NaCl, NH₄Cl, Al(NO₃)₃, CH₃COOK, CH₃COONH₄, Al₂S₃. Как меняется pH водных растворов этих солей? В каком случае гидролиз протекает необратимо?

Решение:

- а) NaCl образована сильным основанием NaOH и сильной кислотой HCl. гидролизу не подвергается, т.к. ни катион, ни анион соли не могут при взаимодействии с водой образовать молекулы слабых электролитов. Водные растворы этой соли имеют нейтральную реакцию среды (pH = 7).
- б) NH_4Cl образована слабым основанием и сильной кислотой, поэтому гидролизуются по катиону:

$$NH_4C1 + H_2O = NH_4OH + HC1$$

В ионной форме:

$$NH_4^+ + H_2O = NH_4OH + H^+$$

Для водного раствора данной соли pH<7, т.к. анионы OH^- связаны образовавшимся слабым электролитом NH_4OH , а катионы H^+ создают кислотную среду в растворе.

в) $Al(NO_3)_3$. образована многовалентным катионом, поэтому протекает ступенчато, через стадии образования основных солей:

1 ступень:

$$Al(NO_3)_3 + H_2O = Al(OH)(NO_3)_2 + HNO_3$$

 $Al^{3+} + H_2O = [Al(OH)]^{2+} + H^+$

2 ступень:

$$Al(OH)(NO_3)_2 + H_2O = Al(OH)_2(NO_3) + HNO_3$$

 $[Al(OH)]^{2+} + H_2O = [Al(OH)_2]^{+} + H^{+}$

3 ступень:

$$Al(OH)_2(NO_3) + H_2O = Al(OH)_3 + HNO_3$$

 $[Al(OH)_2]^+ + H_2O = Al(OH)_3 + H^+$

Гидролиз протекает достаточно сильно по первой ступени, слабо — по второй ступени и совсем слабо — по третьей ступени (ввиду накопления ионов водорода, процесс смещается в сторону исходных веществ). Более полному гидролизу способствует разбавление раствора и повышение температуры. (В этом случае можно учитывать гидролиз и по третьей ступени.)

Соль образована слабым основанием и сильной кислотой, поэтому гидролиз протекает по катиону, а реакция раствора кислая pH < 7.

г) CH₃COOK образована сильным основанием и слабой (ассоциированной) кислотой, поэтому гидролизуется по аниону:

$$CH_3COOK + H_2O = CH_3COOH + KOH$$

В ионной форме:

$$CH_3COO - + H_2O = CH_3COOH + OH$$

Соли многоосновных кислот гидролизуются ступенчато (с образованием кислых солей): 1 ступень:

$$K_2CO_3 + H_2O = KHCO_3 + KOH$$

 $CO_3^{2-} + H_2O = HCO_3^{-} + OH^{-}$

2 ступень:

$$KHCO_3 + H_2O = H_2CO_3 + KOH$$

 $HCO_3 + H_2O = H_2CO_3 + OH^2$

Первая ступень гидролиза протекает достаточно сильно, а вторая - слабо, о чèм свидетельствует рH раствора карбоната и гидрокарбоната калия. (Лишь при сильном разбавлении и нагревании следует учитывать гидролиз образующейся кислой соли). Поскольку при взаимодействии с водой анионов слабых кислот образуются ионы OH-, водный раствор соли имеет щелочную реакцию (pH > 7).

д) CH₃COONH₄ образована слабым основанием и слабой кислотой, поэтому гидролизуется и по катиону и по аниону:

$$CH_3COONH_4 + H_2O = CH_3COOH + NH_4OH$$

Или в ионной форме:

$$CH_3COO^- + NH_4^+ + H_2O = CH_3COOH + NH_4OH$$

Гидролиз таких солей протекает очень сильно, поскольку в результате его образуются и слабое основание, и слабая кислота.

$$K_B(NH_4OH) = 6.3 \cdot 10^{-5}; K_A(CH_3COOH) = 1.8 \cdot 10^{-5}.$$

 $K_B(NH_4OH) > K_{A(}CH_3COOH),$

поэтому реакция водного раствора этой соли будет слабощелочной, почти нейтральной: (pH = 7-8).

e) Al2S3. Гидролиз протекает необратимо с образованием летучих и малорастворимых продуктов:

$$Al_2S_3 + 6H_2O = 2Al(OH)_3 + 3H_2S$$
.

Поскольку и катионы H^+ и анионы OH^- связаны образованием малодиссоциирующихся продуктов, то для данного раствора, учитывая растворимость H_2S в воде, pH<7.

Пример 2. Степень гидролиза нитрата аммония в растворе с молярной концентрацией, равной 0.001 моль/л, равна 7.5·10-4. Рассчитать рН.

Решение:

Запишем ионно-молекулярное уравнение гидролиза: $NH_4^+ + H_2O \rightleftharpoons H^+ + NH_4OH$ Из уравнения следует, что при гидролизе 1 моль NH_4^+ получается 1 моль H^+ . Поскольку степень гидролиза — это доля подвергшихся гидролизу ионов NH_4^+ от их общей концентрации 0,001 моль/л, концентрация гидролизуемых ионов аммония равна:

Сгидр. =
$$\mathbf{c} \cdot \mathbf{\alpha}_{\Gamma} = 0,001 \cdot 7,5 \cdot 10^{-4} = 7,5 \cdot 10^{-7} = \mathbf{cH}^{+}$$

 $\mathbf{pH} = -\lg(7,5 \cdot 10^{-7}) = 6,13$.

Задачи для самоконтроля.

- 1. Написать ионно-молекулярные уравнения реакций гидролиза с указанием рН при растворении в воде следующих солей: сульфата цинка, нитрата калия, хлорида цезия, сульфата хрома (III).
- 2. Написать в ионно-молекулярной форме уравнения гидролиза следующих солей: K_2S , Li_2CO_3 , K_3PO_4 , K_2SO_3 , $ZnCl_2$.

- 3. Написать в молекулярной форме уравнение гидролиза гидросолей и определить pH среды их водных растворов: NaHSO₃, NaHS, KHCO₃, Na₂HPO₄, NaH₂PO₄.
- 4. Вычислить константу гидролиза фторида калия, определить степень гидролиза этой соли в 0,01M растворе и рН раствора.
- 5. Сравните степень гидролиза соли и рН среды в 0,1 М и 0,001 М растворах цианида калия.
- 6. При 60 °C ионное произведение воды $KH_2O = 10^{-12}$. Считая, что константа диссоциации хлорноватистой кислоты не изменяется с температурой, определить pH 0,001 н раствора KOCl при 25 и 60°C.
- 7. рН 0,1 М раствора натриевой соли органической одноосновной кислоты равен 10. Вычислить К диссоциации этой кислоты.
- 8. Исходя из значений К диссоциации соответствующих кислот и оснований, указать реакцию водных растворов следующих солей: NH₄CN, NH₄F, (NH₄)₂S.
- 9. Вычислить константу гидролиза карбоната натрия, степень гидролиза соли в 0,1 М растворе и рН среды.
- 10. Вычислить константу гидролиза ортофосфата калия. Каков pH в 2,4M растворе Na₃PO₄. Определить степень гидролиза.