

Гибель клетки. Старение клетки.

Пролиферация клеток и апоптоз

- Количество клеток в ткани регулируется двумя процессами пролиферацией клеток и «программированной, или физиологической, гибелью клеток» (апоптозом)
 - Оба процесса в организме находятся под контролем стимулирующих или ингибирующих факторов, которые присутствуют в растворимой форме или экспрессируются на поверхности соседних клеток

Апоптоз

- Апоптоз генетически запрограммированная гибель клеток, которая приводит к "аккуратной" разборке и удалению клеток
- Морфологическими признаками этого активного процесса являются изменения клеточной мембраны ("отшнуровывание" пузырьков, так называемых апоптотических телец), распад клеточного ядра, уплотнение хроматина и фрагментация ДНК
 - Клетки, подвергшиеся апоптозу, распознаются макрофагами и другими фагоцитирующими клетками и быстро элиминируются
- Очень важно то, что при апоптозе не развивается воспалительный процесс

Апоптоз

от греч. – опадание листьев

Причины апоптоза

две группы:

- «неудовлетворительное» состояние клетки («апоптоз изнутри»)
 - «негативная» сигнализация снаружи, передающаяся через специальные рецепторы клетки («апоптоз по команде»)

«Апоптоз изнутри»

повреждение хромосом:

- многочисленные разрывы ДНК
- нарушение конформации ДНК
- сшивки между цепями ДНК
- неправильная сегрегация хромосом

повреждения внутриклеточных мембран в результате перекисного окисления липидов

Причины повреждений

- разные виды облучений
- изменения температуры
- химические соединения
- нарушение питания клетки
- деление клетки
 - повреждение клеточных структур, ведущее к апоптозу, хотя и должно быть достаточно сильным, не может быть чрезмерно сильным
 - если повреждения клетки чрезмерны, процесс гибели становится неуправляемым и представляет собой некроз

«Апоптоз по команде»

клетка вполне жизнеспособна, но, с позиций целостного организма, она является ненужной или даже опасной

характерен:

- 1) на той или иной стадии эмбриогенеза редукция ряда эмбриональных зачатков:
- хорды
- **пронефроса**
- частей мезонефрального протока,
- исчезновение межпальцевых перепонок

«Апоптоз по команде»

- 2) при формировании и функционировании иммунной системы
- гибель аутореактивных клонов лимфоцитов
- гибель стимулированных лимфоцитов при длительном отсутствии антигена
- гибель лимфоцитов под действием избытка глюкокортикоидов
- 3) при гемопоэзе
- гибель кроветворных клеток при недостатке колониестимулирующих факторов

«Апоптоз по команде»

- 4) при функционировании женской половой системы
- гибель клеток атрезирующих фолликулов
- гибель клеток редуцирующего желтого тела
- гибель клеток функционального слоя эндометрия накануне менструаций
- гибель лактоцитов молочной железы после прекращения лактации

Регуляция апоптоза

- одним из важнейших инструментов апоптоза является семейство цитоплазматических протеаз – каспаз
 - каспазы способны в определенной последовательности активировать друг друга

к активации каспаз могут приводить:

- сигналы от рецепторов
- отсутствие ростового фактора
- потеря связи с опорным субстратом
- контакт клеток друг с другом
- действие α-ΦΗΟ (фактор некроза опухолей)
- факторы, высвобождающие из митохондрий
- протеаза AIF
- цитохром с

Регуляция апоптоза

мишени каспаз:

- некоторые белки цитоскелета (→ изменение формы клетки появление инвагинаций и выступов)
- гистон Н1 (→ конденсация хроматина)
- ламин В (→ распад ядерной оболочки)
- ферменты репликации и репарации (→ активация белка р53)
- регуляторные белки
- ингибиторы эндонуклеаз
 (→ активация эндонуклеаз фрагментация ДНК)

Митохондриальные факторы апоптоза

- протеаза AIF и цитохром с активаторы каспазного каскада
- в митохондриях специальные каналы для транспорта этих белков
 - <u>белки Bcl-2</u> закрывают каналы и препятствуют апоптозу
- <u>белки Вах</u> открывают каналы и стимулируют апоптоз

<u>Белок р53</u>

= транскрипционный фактор

активируется в ответ на разнообразные повреждения клеточной структуры:

- нерепарированные разрывы и другие повреждения ДНК
- нарушение расхождения хромосом в митозе
- разрушение микротрубочек

<u>Белок р53</u>

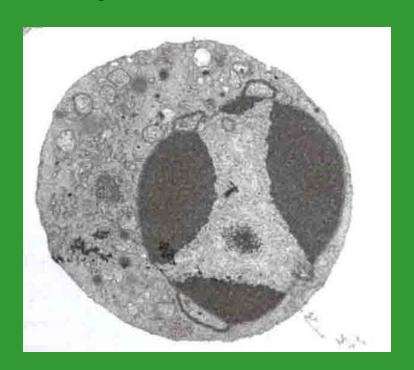
активирует гены:

- ряда рецепторов, воспринимающих команду об апоптозе
- отвечающие за остановку клеточного деления
- белка Вах, открывающего каналы митохондрий

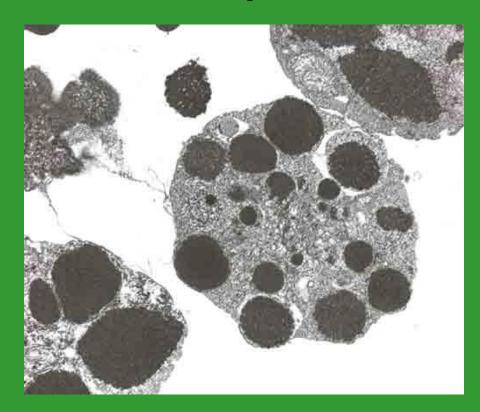
ингибирует гены:

белков Bcl-2, закрывающие каналы митохондрий

тормозит:

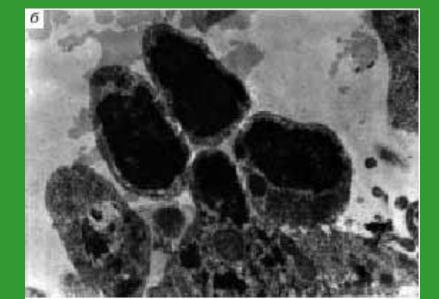

- ангиогенез
- пролиферацию соседних клеток

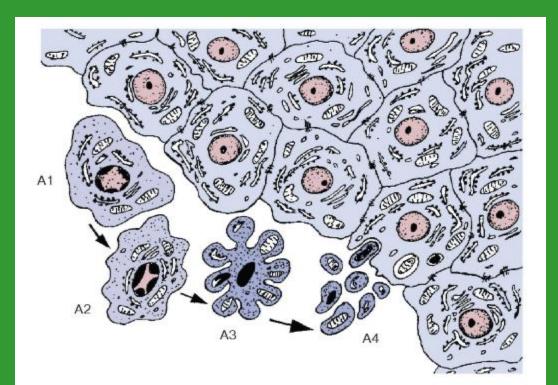
<u>Итоги действия белка р53</u>

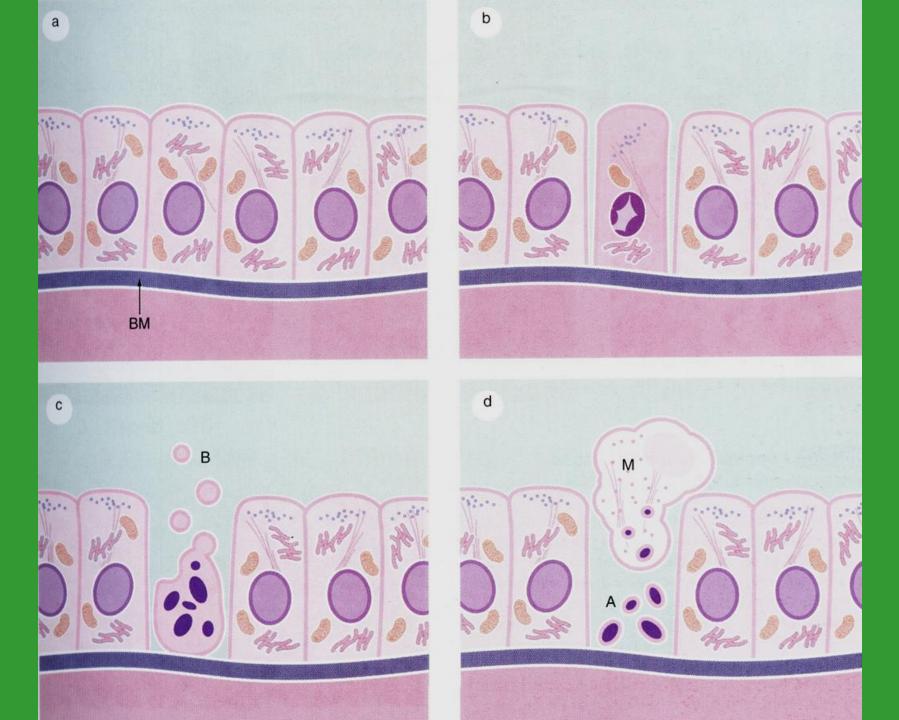

клетка:

- либо задерживается на той или иной стадии митотического цикла и исправляет эти повреждения
 - либо (при невозможности исправления)
 прекращает делиться и вступает в процесс
 клеточного старения
 - либо (при потенциальной опасности поврежденной клетки для ее окружения) осуществляет апоптоз

- 1) конденсация хроматина и некоторое сжатие клетки (из-за конденсации цитоплазмы)
- хроматин приобретает вид плотных и резко исчерченных гомогенных масс, расположенных по периферии ядра


- 2) фрагментация ядра
- ядро распадается на отдельные фрагменты, окруженные ядерной оболочкой и содержащие очень плотные массы хроматина


- 3) изменение формы клетки
- на поверхности клетки появляются инвагинации
- цитоплазма приобретает вид лопастей с постепенно суживающимися ножками


 в конечном итоге клеточные фрагменты отшнуровываются и образуются апоптозные

тельца

- 4) фагоцитоз апоптозных телец окружающими клетками
- к фагоцитозу апоптозных телец способны не только фагоциты, но и прочие окружающие клетки

Сравнительная характеристика апоптоза и некроза

Признак	Апоптоз	Некроз
Индукция	Активируется физиологическими или патологическими стимулами	Различная в зависимости от повреждающего фактора
Распространенность	Одиночная клетка	Группа клеток
Биохимические изменения	Энергозависимая фрагментация ДНК эндогенными эндонуклеазами. Лизосомы интактные.	Нарушение или прекращение ионного обмена. Из лизосом высвобождаются ферменты.
Распад ДНК	Внутриядерная конденсация с расщеплением на фрагменты	Диффузная локализация в некротизированной клетке
Целостность клеточной мембраны	Сохранена	Нарушена
Морфология	Сморщивание клеток и фрагментация с формированием апоптотических телец с уплотненным хроматином	Набухание и лизис клеток
Воспалительный ответ	Нет	Обычно есть
Удаление погибших клеток	Поглощение (фагоцитоз) соседними клетками	Поглощение (фагоцитоз) нейтрофилами и макрофагами

Старение клетки

с возрастом прогрессивно страдает ряд функций клеток:

- снижаются окислительное фосфорилирование в митохондриях
- снижается синтез ферментов
- снижается образование белков рецепторов клеток
- снижена способностью к поглощению питательных веществ
- снижена активность репарации хромосомных повреждений

Теломерная теория старения

- сформулирована А.М. Оловниковым в 1971 г
 - во всех соматических клетках организма механизм репликации теломер отсутствует
 - при делениях клеток теломеры постепенно укорачиваются
 - при приближении длины теломер к критическому уровню клетки начинают стареть, а по достижению этого уровня – погибают
 - в линии половых клеток функционирует механизм поддержания длины теломер

Факты, подтверждающие теорию

- при каждом делении клетки длина теломерных участков сокращается на 50-100 нуклеотидов
 - в половых клетках теломеры длиннее, чем в соматических
 - с возрастом теломеры половых клеток остаются стабильными
 - при введении в клетку ген теломеразы количество делений увеличивается, т.е. поддержание длины теломер предупреждает остановку деления и гибель культуры

Дополнительные предположения

Как укорочение длины теломер влияет на клетку?

- достаточно длинные теломеры вызывают репрессию активности прилежащих генов – при укорочении теломер эти гены активируются
- в местах прикрепления теломер к внутренней ядерной мембране находятся Са**-каналы и поток ионов через них создает условия для функционирования генов при укорочении теломер теряется связь с мембраной, отчего гены оказываются дальше от каналов

Морфологические изменения клетки при старении

- неправильные и дольчатые ядра
- полиморфные вакуолизированные митохондрий
- уменьшение эндоплазматического ретикулума
- деформация комплекса Гольджи
- накопление пигмента липофусцина

