
Лекция 2

Геном человека

2019 г.

Дж.Уотсон (1988/1990-1992)

Д-р Фрэнсис Коллинз – Директор Международного Проекта Геном Человека (с апреля 1993 г.)

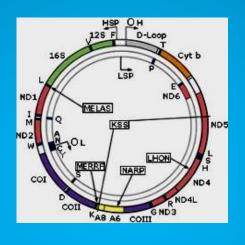
Д-р Крэйг Вентер – Президент *Celera* **Genomics**

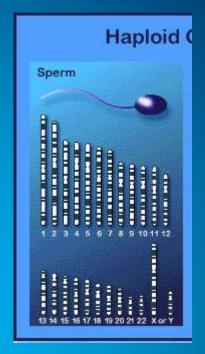
> Черновой вариант закончен к 2000 г. <u>В феврале 2001 г. опубликованы</u> данные о расшифровке 96% **зухроматиновых участков**

генома человека

2006 г. – опубликована

последовательность последней

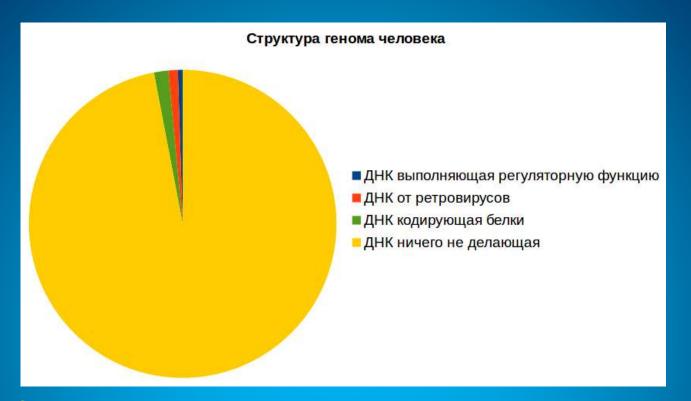

хромосомы (I)


Национальная Программа - 3 млрд \$

Celera Genomics - 300-(100) млн \$

В настоящее время цена расшифровки одного генома составляет 1 тыс. \$

Геном организма:



Геном - вся совокупность генетического материала организма: линейные (хромосомы) и кольцевые (мтДНК) молекулы ДНК [представленные в гаплоидном наборе]

Цели проекта «Геном человека»:

- Генетическое картирование (создание точной генетической карты)
- Физическое картирование (создание физической карты)
- Полный сиквенс генома (определение последовательности нуклеотидов)

- 3,2·10⁹ пар нуклеотидов
- 20 000 генов
- 24 хромосомы (наибольшая плотность в 19 хромосоме, наименьшая в 13 и Y)
- ДНК, кодирующая белки, 1-1,5 % генома
- >95% «мусорная» ДНК

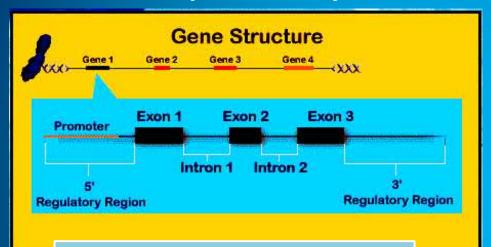
В геноме человека:

- Относительно низкая плотность генов (участок 50 000 п.н. хромосомы 3 дрожжей имеет 20 генов, хромосомы 7 человека – 6 генов)
- При этом очень высокая плотность закодированной информации
- Интроны (в некоторых генах человека до 100)
- Обширные межгенные пространства («генные пустыни»)
- Повторы (например, *транспозон-подобные* области (семейства Alu и L1) >50% геномной ДНК)
- Множественные дупликации
- Псевдогены
- Мультисемейства (кластеры) генов

Группы генов по функциям

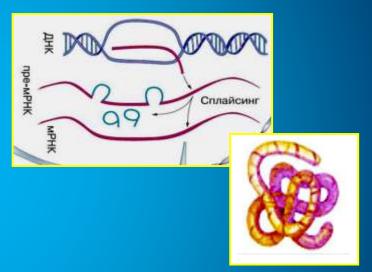
Структурные

Кодируют: іелки ферменты, гистоны, гистоны, гисть кледовательность клеотидов в РНК)


Функциональные

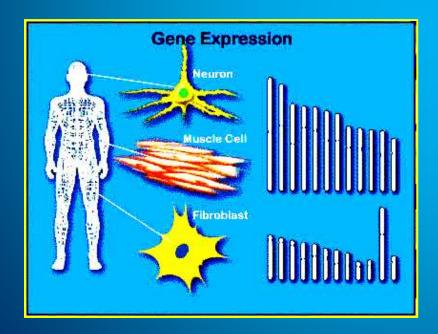
Гены – модуляторы: ингибиторы, интенсификаторы, интеграторы, модификаторы.

Гены – регуляторы, регулирующие работу структурных генов.


Структурные гены:

Экзон-интронное строение:

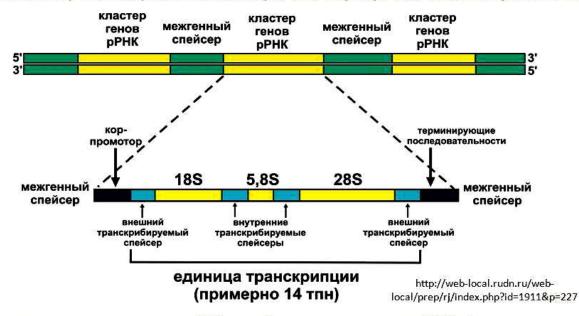
Средний размер гена с интронами – 2,7 тыс. п.н. Размеры интрона: от нуля (гены гистонов) до 234 п.н. (ген мышечного белка титина) Для 60 % генов определены их функции


Альтернативный сплайсинг:

В генах человека как более высокоорганизованного организма количество интронов и их протяженность увеличиваются

Экспрессия генов тканеспецифична:

- Каждая клетка содержит полную копию генома, но экспрессирует не более 20% генов
- В различных тканях синтезируются разные белки

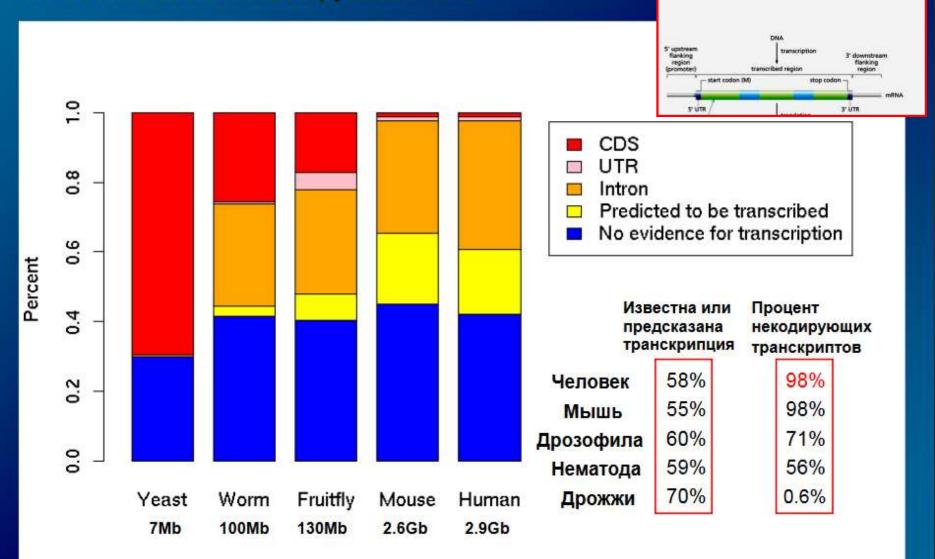


• В различных тканях 1 и тот же ген экспрессируется с разной интенсивностью

РНК-кодирующие гены:

Расположение в геноме генов разных видов РНК

<u>Гены, кодирующие 3 вида рРНК,</u> и гистоны расположены в геноме человека в виде кластеров, они располагаются рядом, образуя тандемные дупликации.



В геноме человека около 200 копий кластеров генов рРНК. Один кластер содержит гены 18S рРНК, 5,8S рРНК и 28S рРНК. В акроцентрических хромосомах (13, 14, 15, 21, 22-я пары) кластеры расположены тандемно в большом количестве копий, формируя ядрышковый организатор.

Виды РНК в эукариотической клетке:

большая часть не кодирует белки!

Structure of Eukaryotic CDS

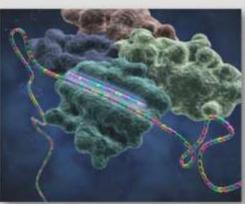
Мир нкРНК:

Наименование	Аббревиа тура	Длина (н)	Функции:		
Длинные некодирующие РНК	IncRNA	200	1) Избират. метилиров. ДНК (направляют меимлтрансферазу); 2) Посадка репрессров policomb		
Малые РНК:					
- Малые ядерные РНК	snRNA	150	 Альтерн. сплайсинг; Регуляция активности ТF; Целостность теломер 		
- Малые ядрышковые РНК	snoRNA	60 -300	 Хим. модиф. pPHK, тPHK,мяPHK; Стабилизация pPHK и защита ее от гидролаз 		
- Малые интер- ферирующие РНК	siRNA	21-22	 Антивирусная имм. защита; Подав. активности собств. генов 		
Антисмысловые РНК	asRNA	Короткие (<200) Длинные (>200)	Блокирование трансляции за счет образования комплекса с собственной мРНК		
Связанные с белками Piwi PHK	piwiRNA	26-32	Регуляция этапов эмбриогенеза (подавление активности МГЭ) и т.д.		

РЕГУЛЯЦИЯ ЭКСПРЕССИИ ГЕНА

Интерференция РНК (RNAi)

РНК-интерференция обнаружена почти во всех зукаристах. Этот механизм предохраняет клетки от РНК-вирусов и мобильных генетических элементов.

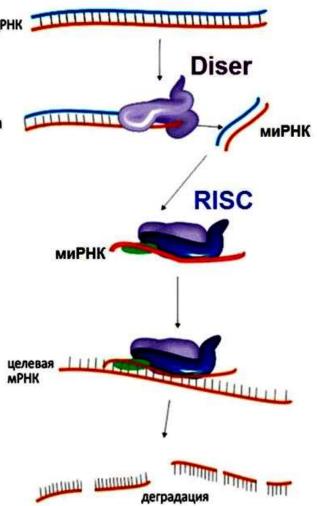

В 2006 году Эндрю Файер и Крейг Мепло получили открытие РНК-

РНК-интерференция

 РНК-интерференция механизм подавления экспрессии гена в результате комплементарного соединения малой интерферирующей РНК (miRNA II/IIII siRNA) с иРНК, подлежащей трансляции, и разрушение последней

рибонуклеазами.

РНК интерференция

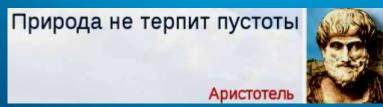

чужеродная двуцепочечная РНК (вирусы, транспозоны)

привлечение белкового комплекса Diser, содержащего нуклеазу, разрезающего РНК на фрагменты (миРНК)

включение миРНК в состав белкового комплекса RISC, избавление от второй цепи

поиск комплементарных чужеродных молекул РНК

разрушение чужеродной РНК


Ген в гене – «генная матрешка»

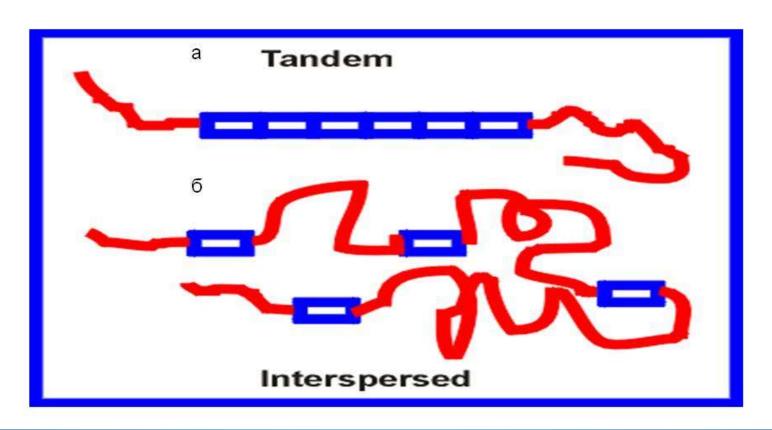
- В геноме человека изредка встречаются варианты, когда внутри одного гена находится другой (чаще в интронах)
 - В хромосоме 22, например, 2 таких случая
- Вставки могут быть и в РНК-кодирующих генах
 - Например, в митохондриальном гене рРНК участок ДНК, кодирующий короткий белок гуманин (human человек), участвующий в программируемой клеточной гибели
- Также и внутри структурного гена может быть ген рРНК

«Пробелы» между кодирующими последовательностями:

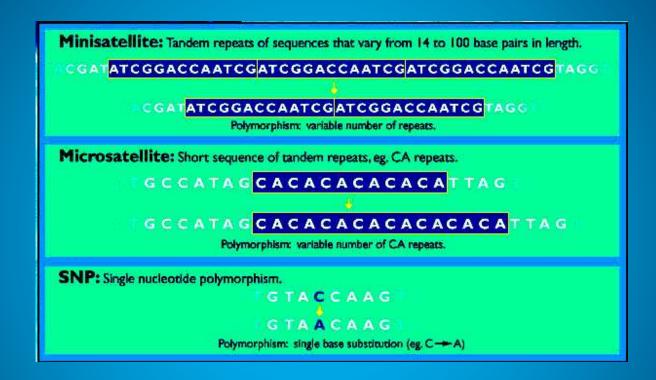
- Большие межгенные промежутки (за счет относительно низкой плотности генов)
- Интроны (вставочные последовательности в гене)
- <u>Спейсеры</u> (Spacer «разделитель») участки нетранскрибируемой ДНК, расположенные между тандемно повторяющимися генами, например, между генами рРНК

В некодирующих регионах — еще одна особенность генома человека - <u>ПОВТОРЫ ДНК</u>

Повторы в геноме человека:



Повторы:


Виды повторов:

- а. тандемные
- б. диспергированные

Роль повторов не вполне ясна – возможно, структурная. Они обычно локализуются в центромерных и теломерных районах хромосом. Выявляются при С-окраске (на структурный гетерохроматин)

Повторы обеспечивают полиморфизм геномов:

Полиморфизм - существование более чем одного варианта последовательности ДНК

Полиморфизм ДНК - основа разнообразия генетических маркеров

Сателлитная ДНК (10%) выполняет структурную роль, способствуют повышенной спирализации ДНК (гетерохроматин)

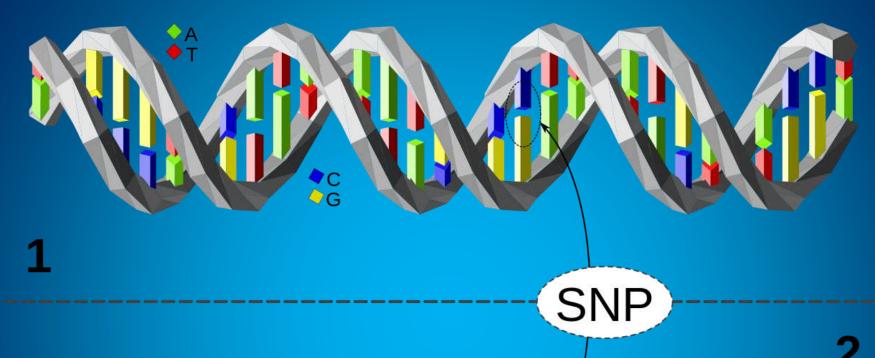
Базовая последовательность из 171 нуклеотида

Обнаруживается в прицентромерных областях хромосом

минисателлиты

Базовая последовательность - 20 - 70 нуклеотидов

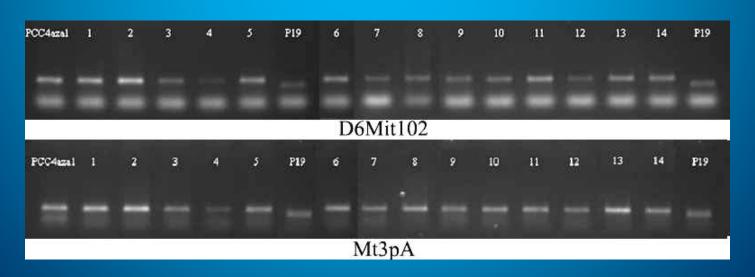
Тандемно соединенные повторы


микросателлиты


2 - 4 повторяющихся нуклеотида

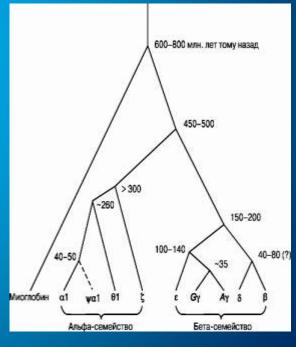
Превышение количества повторов формирует болезни экспансии

SNP- Single nucleotide polymorphism

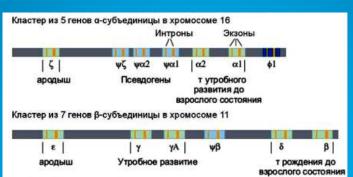

- Отличия последовательности ДНК размером в один нуклеотид (A, T, G или C)
- Особенность генома человека, результат точковых мутаций
- Широко представлены в спейсерных областях кластеров рибосомальных генов
- Часто используются в качестве маркеров для построения кладограмм молекулярногенетической систематики на основе дивергенции (расхождения) гомологичных участков ДНК в филогенезе

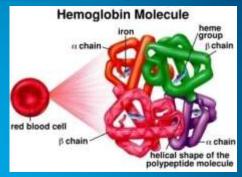
Наиболее частые маркеры:

	SNP	Микросателлиты
Число аллелей в популяции	1-2 (4)	1 - более 20
Средняя гетерозиготность	~0,3	~0,7
Информативность	+	+++
Число локусов в геноме человека	~10 ⁶	~10 ⁵
Возможность автоматизации	+++	+

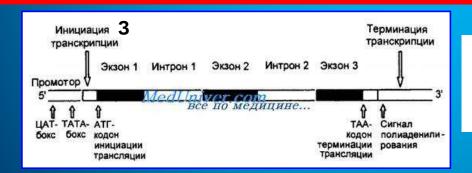

Дупликации в геноме человека:

• Большие дупликации связаны с происхождением позвоночных и возникли около 500 млн лет назад


• В геноме человека – около 1077 блоков дупликаций, содержащих более 10 000 генов (это 3,6 % геномной ДНК)


• Дупликации приводят к появлению мультисемейств (кластеров) генов, а также

- Псевдогенов (выключенных генов)
- или
- Дивергенции генов

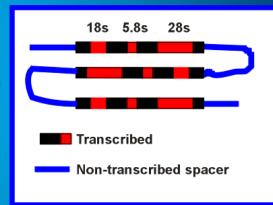


Дупликации приводят к формированию кластеров (мультигенных семейств) генов:

Кластерная организация генов – еще одна особенность генома человека

Каждый ген кластера эукариот имеет свои регуляторные области

Гены в кластере могут несколько изменяться строению и функции


Кластеры – «генные семейства»

- Семейством называют набор из 2 и более генов, чьи экзоны родственны между собой (идентичны или почти идентичны по нуклеотидной последовательности)
- В геноме человека присутствует около 1500 таких семейств генов, причем только 100 из них специфичны для позвоночных, остальные родственны с низшими эукариотами (свидетельство общего предка)

В виде кластеров в геноме человека

располагаются, например:

- Гены, кодирующие рибосомные РНК
- Гены белков гистонов, Т.е. гены тех продуктов, которые особенно нужны клетке

• Кластеры могут быть в виде тандемных дупликаций колярующий го

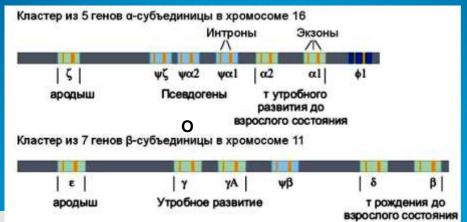
Дивергенция генов в кластере:

- Если в копиях генов происходят мутации, в таких генах появляются отличия, хотя формальное родство между ними сохраняется
- Гены «расходятся» «дивергенция генов»
- Функция остается сходной
 - В геноме человека около 30 генов факторов роста фибробластов (у дрозофилы их 2) и 1000 копий генов рецепторов обоняния

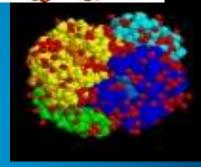
Если мутация приводит к <u>потере</u> функции генов,

- Ген становится «неработающим»
- Такие гены носят название псевдогенов
- Обозначаются знаком «Ф» перед названием гена

В геноме человека обнаружено около 20 000 таких «вымерших» («реликтовых») семейств Например, среди 1000 генов рецепторов обоняния 60 % являются псевдогенами


2 механизма появления псевдогенов:

Дупликация
 существующего гена,
 в 1-ой из копий
 которого
 накапливаются
 мутации


Другой процесс связан с процессами сплайсинга и обратной транскрипции:

- на сформировавшейся мРНК синтезируется копия в виде кДНК;
- кДНК встраивается в любое место генома (эффект положения)
- Такие псевдогены не содержат интронов, промоторных участков и некоторых экзонов

Глобиновые гены и гемоглобин:

Совмещение α- (141 AK) и β-цепей (146 AK) Нуклеотидная последовательность в генах внутри семейств почти идентична

Отличия - по интронам В кластерах присутствуют псевдогены (нефункционирующие гены)

Каким же образом решали задачу расшифровки генома человека?

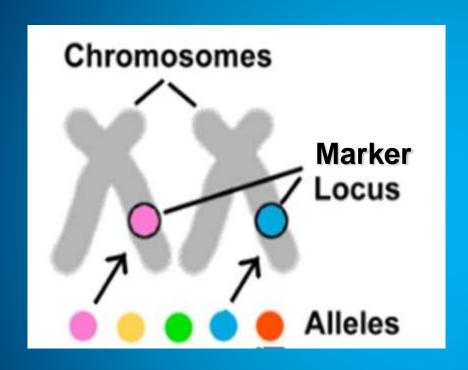
- На первоначальных этапах секвенирование отрезков ДНК по 1000 н.
- Впоследствии «метод дробовика»:
 1) получение случайной массивной выборки клонированных последовательностей (участки 150.000 н → вектор → бактериальная хромосома → репликация в бактериальной клетке)
- 2) набор контигов
- 3)12-кратное покрытие каждый N встречался в 12 фрагментах (ридах)
- Парные прочтения (по обеим цепям) на случай затруднений при 1-ом определении

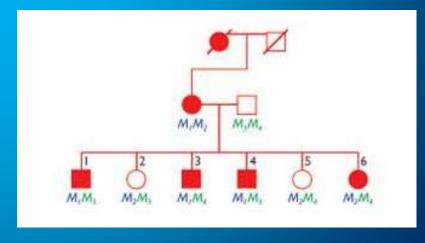
Картирование генов -2 стратегии:

• От белка – к гену (функциональное картирование, «прямая генетика»)

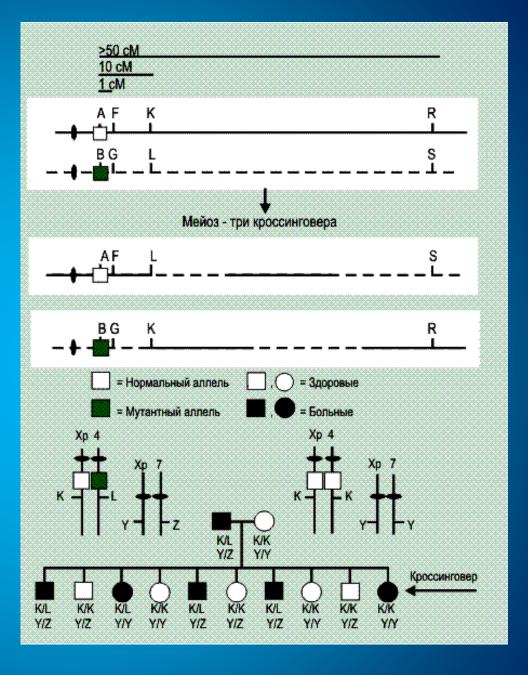
- От гена к белку («обратная генетика»:
 - кандидатное картирование
- - позиционное картирование
- - позиционно-кандидатное картирование)

Гены наследственных заболеваний, найденные при помощи стратегии «от гена – к белку»:

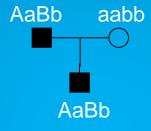

Болезнь	Дефектный белок
	· · · ·
Болезнь Альцгеймера	apoE
Амиотрофный латеральный склероз	Супероксиддисмутаза
Болезнь Шарко-Мари-Тус, тип 1А	Миелиновый белок 0
Болезнь Шарко-Мари-Тус, тип 1В	Периферический миелиновый бел. 22
Синдром Крузона	Рецептор фактора роста фибробл. 2
Гипертрофическая кардиомиопатия	Миозин сердца, тяжелая цепь
Неполипозный рак толстой кишки	hMSH2, hMLH1, hPMS1, hPMS2
Семейная меланома	p16
Геморрагическая телегиэктазия тип 1	Эндоглин
Гиперэкплексия	Ингибитоорный рецептор глицина
Синдром Джексона-Вейсса	Рецептор фактора роста фибробл. 2
Синдром длинного QT	SCNSA, MERG ионных каналов
Злокачественная гипотермия	Рецептор рианодина
Синдром Марфана	Фибриллин
Множеств. эндокринная неоплазия 2А	Рецептор тирозинкиназы RET
Синдром Пфайффера	Рецептор фактора роста фибробл. 1
Суправальвулярный аортальный	Эластин
стеноз	
Пигментный ретинит	Периферин, родопсин
Синдром Ваарденбурга	Ген гомеобокса РАХ3


Поиск генов при выполнении программы «Геном человека»:

- **Анализ ассоциаций** поиск информативных маркеров
- Анализ сцепления, или рекомбинационный анализ, поиск блока маркеров, которые передаются с геном болезни потомкам


Главное условие – информативность маркеров (т.е. гетерозиготность маркерных локусов)

Анализ ассоциаций:


Анализ сцепления:

Анализ сцепления - анализ косегрегации (совместного наследования) генов при передаче в ряду поколений

 θ - рекомбинантная функция (θ = 50% при отсутствии сцепления; θ <50% при сцеплении)

Отношение правдоподобий (шансы за и против сцепления): $P_1/P_2 = 2$

Рекомбинация / сцепление

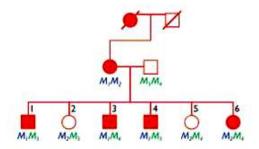
Метод оценки LOD-баллов: шансов за и против сцепления (*Холдейн, Смит, 1947; Мортон, 1955*)

LOD - логарифм соотношения шансов (вероятностей) - logarithm of odds ratio

LOD-балл: $Log_{10}[P(\theta) / P(0.5)]$

Подтверждение сцепления: LOD-балл > +3 **Исключение сцепления:** LOD-балл < -2

Построены генетические карты генома человека:

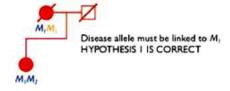


В соответствии с LOD- баллом определено сцепление между генами или маркерами:

- 1)Выявлены группы сцепления
- 2)Изучено расположение генов в этой группе;
- 3)Определено соответствие группы сцепления конкретному фрагменту хромосомы

В настоящее время составлены генетические карты для каждого участка генома <1 сМ (~ 10 генов)

(A) The pedigree

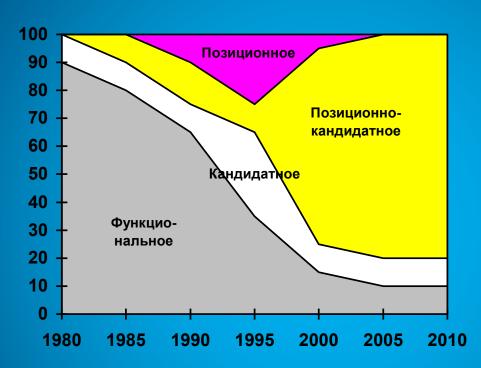


(B) Possible interpretations of the pedigree

MOTHER'S CHROMOSOMES

		Hypothesis I Disease M,	Hypothesis 2 Healthy M, Disease M,
		Healthy M,	
CHILD I	Disease M ₁	Parental	Recombinant
CHILD 2	Healthy M ₂	Parental	Recombinant
CHILD 3	Disease M	Parental	Recombinant
CHILD 4	Disease M.	Parental Recombina	
CHILD 5	Healthy M ₂	Parental	Recombinant
CHILD 6	Disease M ₂	Recombinant	Parental
	Recombination frequency	1/6 = 16.7%	5/6 = 83,3%

(C) Resurrection of the maternal grandmother



Пример анализа родословной человека

- (A) Родословная показывает наследование генетической болезни в семье двух живых родителей и 6 детей, а также при наличии информации о родителях матери. Аллель болезни является доминантным по отношению к аллелю здоровья. Реальным является определение степени сцепления между геном болезни и микросателлитом М типированием аллелей для этого микросателлита (M_1 , M_2 , и т.п.) у живых членов семьи.
- (В) Родословная может быть интерпретирована двумя разными путями: Гипотеза 1 дает низкую частоту рекомбинации и свидетельствует, что ген болезни сильно сцеплен с микросателлитом М; Гипотеза 2 подтверждает, что ген и микросателлит менее прочно сцеплены
- (C) Реконструкция генотипа микросателлита бабушки подтверждает справедливость Гипотезы 1

Стратегии картирования генов болезней человека и их динамика

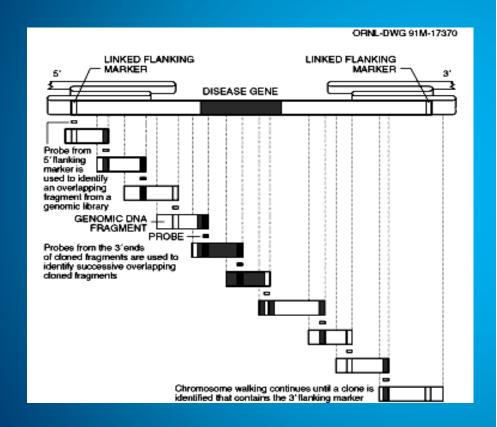
«Прямая» генетика путь от выяснения функции – к определению гена

«Обратная» генетика (Ботстейн, 1980). От карты (позиции) - к функции

Функциональное картирование - наличие априорных знаний о точной природе дефекта (биохимия, физиология): серповидно-клеточная анемия, фенилкетонурия Кандидатное картирование –определение круга возможных кандидатных генов Клонирование предшествует картированию. Путь от функции к позиции Позиционное картирование –путь от выявления месторасположения гена на хромосоме до выяснения его функции

Позиционно-кандидатное картирование

Позиционное картирование (клонирование) (1980 г.)


- Основан на анализе сцепления между геном заболевания и аллелями полиморфных ДНК-маркеров, т.е., по сути, метод является генетическим картированием
- Метод позволяет избежать секвенирования и скрининга мутаций в генах-позиционных кандидатах, лежащих внутри картированной области
- Метод позиционного картирования лежит в основе классической схемы полногеномного скрининга, т.к. позволяет картировать локус, повреждения в котором приводят к заболеванию, с точностью порядка 0,1 сМ, что соответствует длине последовательности 100—200 т.п.н. В такой достаточно узкой области может быть проведен поиск мутаций во всех расположенных в ней генах

Позиционное клонирование - этапы:

- 1) подбор семей с сегрегацией наследственного заболевания в нескольких поколениях (с несколькими случаями заболевания);
- 2) генетическое картирование (установление сцепления локуса заболевания с полиморфным ДНК-маркером);
- 3) построение физической карты области локализации гена из перекрывающихся клонов геномной ДНК (карты контиг);
- 4) поиск в этих клонах возможных продуктов генов («транскриптов»);
- 5) исследование генов-кандидатов на наличие мутации, сцепленной с заболеванием
- 6) идентификация гена
- 7) исследование белка
 - Показано, что для картирования моногенного заболевания, не сцепленного с полом, при анализе одной большой семьи с сегрегацией заболевания в нескольких поколениях обычно достаточно набора из 300 микросателлитных маркеров, распределенных по геному с интервалом- 10 сМ. Наборы с числом маркеров от 300 до 600 используются для анализа выборок, состоящих из нескольких небольших семей. Анализ генетического сцепления проводится на основании частоты совместной передачи потомству двух или нескольких признаков - генетических маркеров, одним из которых может являться наследствествнное заболевание

«Прогулки» и «прыжки»

по хромосоме:

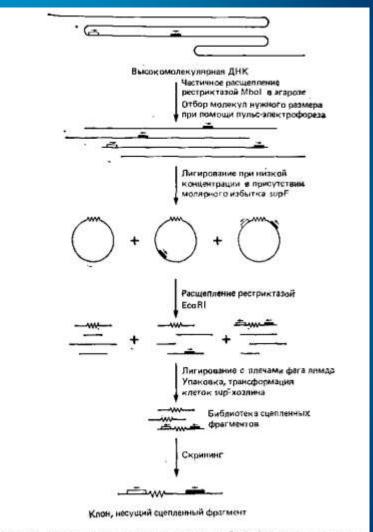
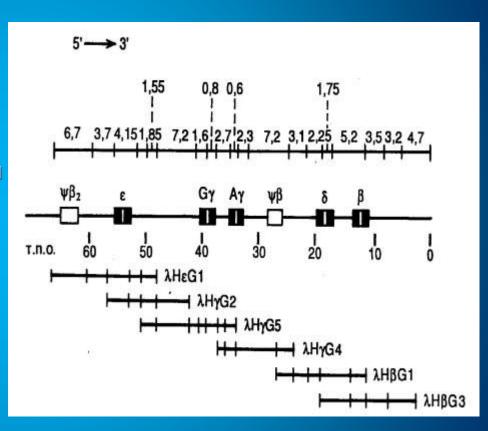
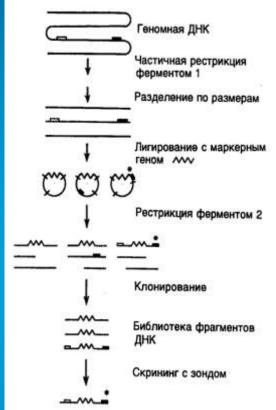



Рис. 4. Принцип создания стандартной библиотеки прыжков.

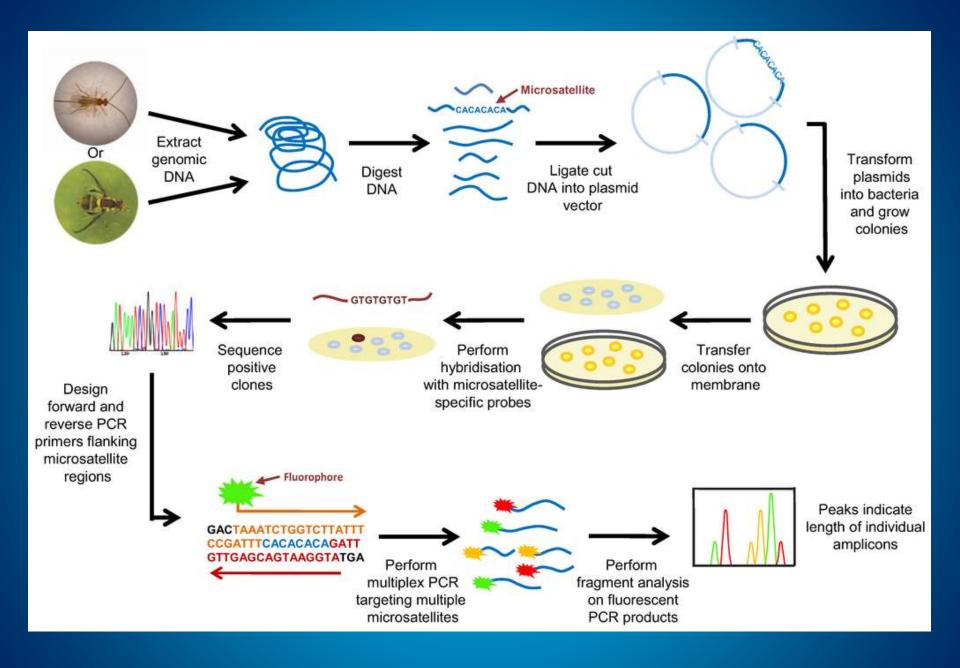
«Прогулка по хромосоме»


Используется для картирования генов, расположенных по соседству с уже выделенными генами Для этого концевые фрагменты известного гена используют в качестве зондов для поиска фрагментов ДНК, перекрывающихся с этим геном Однако зонд должен быть комплементарен уникальной последовательности нуклеотидов, которая встречается в геноме только один раз. Так были исследованы многие кластеры, в частности, бета-глобиновых генов

С помощью "прогулки по хромосоме" удается детально картировать участки ДНК длиной до 250 т.п.о.

«Прыжки по хромосоме»:

- ДНК расщепляют рестриктазой 1)
- 2) С помощью электрофореза получают фракцию фрагментов ДНК определенного размера (в данном примере ~100 т.п.о.)
- Затем фрагменты ДНК лигируют с маркерным 3) геном, что приводит к образованию кольцевых молекул
- 4) Кольцевые молекулы ДНК расщепляют другой рестриктазой с целью образования коротких фрагментов ДНК
- 5) Полученные фрагменты ДНК исследуют путем гибридизации с зондом, комплементарным точке начала "прыжка по хромосоме»
- 6) Отобранные в результате гибридизации клоны содержат маркерный ген, удаленный от зонда на 100 т.п.о.
- Т.обр., получают информацию о гене, удаленном 7) от точки начала "прыжка по хромосоме" на определенное конкретное расстояние, и этот ген общей длиной от 100 до далее используют в качестве зонда для исследования следующих фрагментов ДНК


Метод "прыжков по хромосоме" позволяет анализировать за 1 прием фрагменты ДНК 500-1000 m.п.о.

Гены наследственных заболеваний, найденные позиционным клонированием

Болень	Год	Хромосмные	Тринуклеотидные
	1006	перестройки	повторы
Хронический грануломатоз	1986	+	
Мышечная дистрофия Дюшенна Ретинобластома		+	
Ретинооластома		+	
Муковисцидоз	1989	-	
Опухоль Вильмса	1990	+	
Нейрофиброматоз, тип 1		+	
Хороидермия		+	
Синдром фрагильной Х-хр.	1991	+	+
Семейный полипоз толстой кишки		+	
Синдром Каллмана		+	
Аниридия		+	
V	1002		
Миотоническая дистрофия	1992	-	+
Синдром Лоу		+	
Синдром Норри		+	
Болезнь Менкеса	1993		
	1993	+	
Х-сцепл. агаммоглобулинемия		+	
Недостаточность глицеролкиназы Адренолейкодистрофия		T	
Рейрофиброматоз, тип 2		-	
Болезнь Гентингтона		-	+
Болезнь фон Гиппеля-Линдау			,
Спиноцеребральная атаксия I			+
Лисэнцефалия		+	
Болезнь Вильсона			
Туберозный склероз		+	
-,1			
Синдром Маклеода	1994	+	
Поликистоз почек		+	
Фрагильная Х-хр. Е		+	+
Ахондроплазия		-	
Синдром Вискотта-Олдрича		-	
Рак груди и яичиков, ранняя форма		-	
Диастрофическая дисплазия		-	
Врожденная гипоплазия надпочечников		+	
Синдром Орскога-Скотта		+	
Мышечная дистрофия Эмери-Дрейфуса		-	
Болезнь Макадо-Джозефа		-	+
C	1005		
Спинальная мышечная атрофия	1995	-	
Хондродисплазия пунктата		+	
Глазной альбинизм		+	

Скрининг генома: интервальное картирование

- Начальный скрининг всего генома: 100-300 маркеров (уровень разрешения 10-30 сМ).
- Подробный скрининг участка, для которого обнаружено сцепление или
- Скрининг участка генома, о котором имеется предварительная информация (кандидатный ген, сингенная модель у мышей)
- Поиск кандидатных генов
 - Поиск по карте транскриптов (> 50.000 EST (cDNA), уровень разрешения 0.5 Mb)
 - Поиск хромосомных перестроек
 - Анализ неравновесия по сцеплению в изолированных популяциях (уровень разрешения до 50 Kb)
- Физическое картирование и клонирование гена

Проблемы, затрудняющие генетическое картирование МФ3:

Нет однозначного соответствия генотип-фенотип
Один генотип - разные фенотипы, разные генотипы - один фенотип

•Полигения / мультифакториальность

Фенотип является результатом действия аллелей нескольких (многих) генетических локусов / в сочетании с действием средовых факторов

•Неполная пенетрантность

Не все носители мутантного генотипа проявляют фенотип, отличный от нормы

•Фенокопии

Проявление мутантного фенотипа у индивидов с нормальным генотипом по причинам негенетического характера

•Генетическая гетерогенность

Сходство клинической картины для мутаций по различным генетическим локусам

•Неменделевские механизмы передачи генетической информации

Митохондриальная наследственность

Импринтинг

Антиципация (экспансия тринуклеотидных повторов)

- •Высокая частота аллеля, связанного с болезнью
 - Присутствие в родословной нескольких копий аллеля, различных по происхождению
- Редкость заболевания

Затруднен сбор родословных с несколькими больными индивидами

Генетика человека в России:

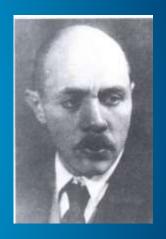
Н.К.Кольцов

Гипотеза о молекулярном строении и матричной репродукции хромосом (1928)
Организатор и председатель
Русского евгенического общества (1921-1929)

А.С.Серебровский

Термин «генофонд» (1927) Генетика популяций, структура гена

Идея создания каталога генов (1925)


Первая в мире медико-генетическая консультация (1929)

Премия Давиденкова РАМН

С.Г.Левит

Основатель первого медико-генетического института (1935)

Н.П.Бочков

Академик РАМН Основатель и первый директор Института медицинской генетики (МГНЦ)

Современные центры генетики человека:

Медико-генетический научный центр РАМН, Москва Институт медицинской генетики СО РАМН, Томск Ин-т акушерства, гинекологии и перинатологии РАМН, СПБ Ин-т общей генетики, Москва Институт цитологии и генетики, Новосибирск Институт биохимии и генетики, Уфа