
Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Кафедра клинической лабораторной диагностики

Печень играет важную роль в обмене белков, углеводов, липидов.

Клетки печени метаболизируют, детоксицируют и экскретируют экзо- и эндогенные вещества.

Функции печени

Роль печени в <mark>обмене</mark> белков

При поражениях печени нарушается процесс дезаминирования аминокислот, что приводит к увеличению их концентрации в крови и моче.

Дезаминирование аминокислот сопровождается образованием аммиака, являющегося клеточным ядом. Последний обезвреживается путем синтеза мочевины. Этот процесс имеет место почти исключительно в печени; мочевинообразование является одной из самых важных её функций.

Роль печени в обмене белков

Кроме дезаминирования, аминокислоты подвергаются в печени переаминированию. В крови повышение активности трансаминаз

АЛТ - аланинаминотрансферазы,

АСТ – аспартатаминотрансферазы

ЛДГ - 5 - лактатдегидрогеназы 5

позволяет обнаружить патологию печени ещё в дожелтушный период.

Роль печени в обмене липидов

- **❖** синтез жирных кислот
- синтез триглицеридов
- ❖синтез фосфолипидов холестерина и его эфиров
- ❖липолиз триглицеридов
- ❖окисление жирных кислот
- ❖образование ацетоновых (кетоновых) тел
- ❖синтез плазменных липопротеидов

Роль печени в обмене липидов

Биосинтез холестерина в печени регулируется по принципу отрицательной обратной связи. **Холестерин**

Выделяется из организма с желчью

участвует в образовании желчных кислот

используется для синтеза стероидных гормонов и других соединений

может взаимодействовать с жирными кислотами с образованием эфиров холестерина

Клинические и биохимические синдромы поражения печени:

- 1) Цитолитический синдром
- 2) мезенхимально-воспалительный синдром
- 3) Холестатический синдром (синдом холестаза)
- 4) Синдром малой печеночно-клеточной недостаточности

Синдром нарушения целостности гепатоцитов (цитолитический синдром)

АСТ, АЛТ, ЛДГ4 и ЛДГ3 (в 5-20 раз) – индикаторные ферменты Фруктозо-1-фосфатальдолазы, сорбитдегидрогеназы Концентрации ферритина, Сывороточного железа, Прямой фракции билирубина.

Морфологическая основа: гидропическая и ацидофильная дистрофия и некроз гепатоцитов с повреждением и повышением проницаемости клеточных мембран.

Синдром холестаза (экскреторно-билиарный синдром)

ЩФ, ГГТФ, ЛАП Холестерина Конъюгированной фракции билирубина Желчных кислот Фосфолипидов

Морфологическая основа: гиперплазия гладкой цитоплазматической сети гепатоцита, изменения билиарного полюса гепатоцита, накопление компонентов желчи в гепатоците, которые нередко сочетаются с цитолизом гепатоцитов.

Синдром печеночно-клеточной недостаточности (синдром синтетической недостаточности) Билирубина за счет неконъюгированной фракции

Общего белка (особенно альбумина)
Трансферрина
Холестерина
II, V, VII факторов свертывания крови
Холинэстеразы
Альфа-липопротеинов

Морфологическая основа: выраженные дистрофические изменения гепатоцитов и/или значительное уменьшение функционирующей паренхимы печени вследствие ее некротических изменений

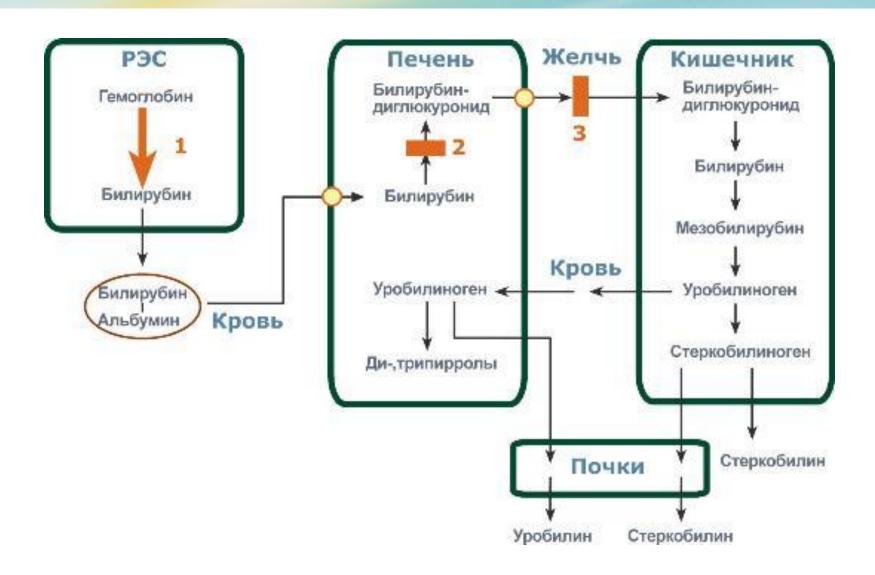
Мезенхимально-воспалительный синдром.

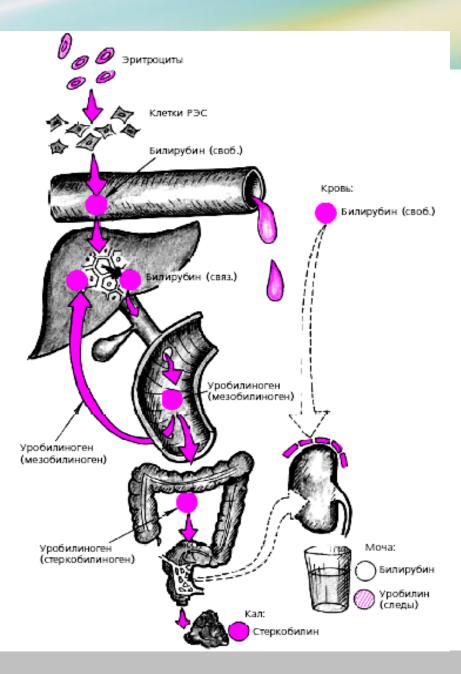
СОЭ
Иммуноглобулинов
<u>С-реактивного белка, церуллоплазмина</u>
Появление антител к субклеточным фракциям гепатоцита,

Морфологическая основа: активация и пролиферация лимфоидных и ретикулогистиоцитарных клеток, усиление фиброгенеза, формирование активных септ с некрозами гепатоцитов, внутрипеченочная миграция лейкоцитов, васкулиты

Типы желтух.

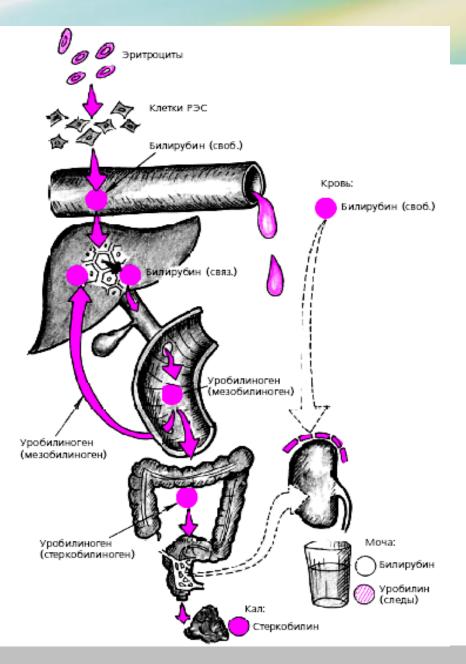
При любом поражении печени может развится желтуха, которая зачастую является первым симптомом болезни печени.


желтуха представляет собой желтое неестественное окрашивание кожи или склер. Это связано с присутствием в плазме билирубина в концентрациях, превышающих 40 мкмоль/л. В норме концентрация билирубина в плазме менее 22 мкмоль/л.


Жёлчные пигменты -

продукты распада гемоглобина и других производных порфирина, экскретируемые с желчью, мочой, калом.

Основная их масса образуется в процессе катаболизма гемоглобина при распаде эритроцитов в клетках системы мононуклеарных фагоцитов. Желчные пигменты представляют собой соединения, содержащие 4 пиррольные группы, соединенные одноуглеродными мостиками в открытую, незамкнутую цепь (в отличие от замкнутой структуры гема).


Схема образования билирубина

В нижних отделах желчевыводящих путей и кишечнике происходит восстановление связанного билирубина до уробилиногена.

Часть уробилиногена (мезобилиноген) всасывается в кишечнике и по системе воротной вены вновь попадает в печень, где в норме происходит практически полное его разрушение.

Другая часть уробилиногена (стеркобилиноген) всасывается в кровь в геморроидальных венах, попадая в общий кровоток и выделяясь почками с мочой в незначительных количествах в виде уробилина, который часто не выявляется клиническими лабораторными методами.

Наконец, третья часть уробилиногена превращается в стеркобилин и выделяется с калом, обусловливая его характерную темно-коричневую окраску.

3 основные причины повышения уровня билирубина в крови

Скорость синтеза билирубина повышена и превышает выделительную способность печени (гемолитическая, надпеченочная желтуха)

Угнетение конъюгационных и/или выделительных механизмов в печени (печеночная, гепатоцеллюлярная желтуха)

Обструкция билиарной системы, препятствующая оттоку желчи (холестатическая, подпеченочная, механическая, обструкционная желтуха)

Надпеченочная желтуха

Механизм: повышенное разрушение эритроцитов - как зрелых клеток, так их предшественников. Разрушение зрелых клеток может быть результатом гемолиза или следствием утилизации внутренних крови после кровотечений, например, поврежденных мягких тканях.

Надпеченочная желтуха

Механизм:

- ✓ Гипербилирубинемия при надпеченочной желтухе является следствием накопления неконъюгированного билирубина, который не выводится почками.
- √При этом возрастает поступление билирубина из печени в кишечник.
- √Продуцируется большое количество уробилиногена, уровень которого в моче повышается.

Гепатоцеллюлярная желтуха

Механизм: врожденные нарушения транспорта билирубина приводят к желтухе из-за несовершенного поглощения, сниженой конъюгации или ослабленного выведения билирубина.

Генерализованная гепатоцеллюлярная дисфункция может иметь место при гепатитах и декомпенсированных печеночных циррозах.

Гепатоцеллюлярная желтуха

Механизм:

Патогенез ГЦ желтухи сложен, свой вклад вносят нарушения захвата, внутриклеточного транспорта, сниженная конъюгация билирубина.

При наличии генерализованной дисфункции захват билирубина печенью снижается и, следовательно, большее его количество экскретируется почками.

Холестатическая желтуха

Механизм: желтуха вызывается нарушением выведения и накоплением конъюгированного билирубина, фильтрующегося в клубочках и появляющегося в моче.

Вместе с тем, билирубин в моче может и не определяться, возможно потому, что изменения процессов конъюгации приводят к образованию менее водорастворимого билирубина, связанного с альбумином.

Холестатическая желтуха

<u>Механизм</u>

обструкции При полной билирубин не поступает кишечник, уробилиноген He образуется и не определяется в моче, а каловые массы могут иметь белую окраску.

Гемолитическая болезнь новорожденного

Причины. Несовместимость крови матери и плода по группе или по резусфактору.

Клиническая диагностика. Проявляется сонливостью, плохим сосанием, умственной отсталостью, ригидностью затылочных мышц, тоническими судорогами, тремором конечностей, изменением рефлексов с возможным развитием глухоты и параличей.

Гемолитическая болезнь новорожденного

Лабораторная диагностика. В КРОВИ выраженная анемия, выявляются ретикулоцитоз, эритро- и нормобластоз. Гипербилирубинемия за счет непрямой фракции от 100 до 342 мкмоль/л, в дальнейшем присоединяется и прямая фракция. Уровень билирубина в крови быстро нарастает и к 3-5 дню жизни достигает максимума.

Физиологическая (транзиторная) желтуха новорожденных

<u>Причины.</u>

- относительное снижение активности УДФ-глюкуронилтрансферазы в первые дни жизни, связанное с повышенным распадом фетального гемоглобина,
- абсолютное снижение активности УДФ-глюкуронилтрансферазы в первые дни жизни,
- дефицит лигандина,
- слабая активность желчевыводящих путей.

Клиническая диагностика.

- окрашивание кожи на 3-4 день после рождения,
- гемолиза и анемии нет.

Лабораторная диагностика

Увеличение концентрации свободного билирубина в сыворотке до 140-240 мкмоль/л.

Желтуха недоношенных

<u>Причины.</u>

- относительное снижение активности УДФ-глюкуронилтрансферазы в первые дни жизни, связанное с повышенным распадом фетального гемоглобина,
- абсолютное снижение активности УДФ-глюкуронилтрансферазы в первые дни жизни,
- дефицит лигандина,
- слабая активность желчевыводящих путей.

Клиническая диагностика.

- окрашивание кожи на 3-4 день после рождения,
- гемолиза и анемии нет.

Лабораторная диагностика

Увеличение концентрации свободного билирубина в сыворотке до максимума на 5-6 дни после рождения, более выражено по сравнению с физиологической желтухой.

Негемолитическая гипербилирубинемия новорожденных, вызываемая молоком матери.

Причины.

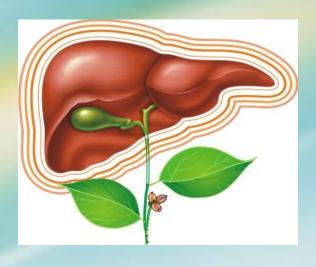
Подавление активности УДФ-глюкуронилтрансферазы, предположительно, эстрогенами материнского молока.

Клиническая диагностика.

Проявляется желтухой, иногда с явлениями поражения ЦНС.

Лабораторная диагностика

Увеличение концентрации свободного билирубина в сыворотке.


Изменение лабораторных показателей при различных видах заболевания печени

	Заболевания печени			
Тест	Заболевания с некрозом гепатоцитов (вирусный, лекарственный, аутоиммунный гепатит)	Холестатическое заболевание (первичный цирро з)	Инфильтративный процесс (рак печени)	
Аминотрас- феразы	Умеренное или значительное повышение	Норма или слабое повышение	Норма или слабое повышение	
Щелочная фосфотаза	Норма или слабое повышение	Умеренное или значительное повышение	Умеренное или значительное повышение	
Билирубин общий	От нормы до значительного повышения	От нормы до значительного повышения	От нормы до слабого повышения	

Изменение лабораторных показателей при различных видах заболевания печени

Тест	Заболевания печени		
	Заболевания с некрозом гепатоцитов (вирусный, лекарственный, аутоиммунный гепатит)	Холестатическое заболевание (первичный билиарный цирроз)	Инфильтративный процесс (рак печени)
Протромбиновое время	Увеличено, не зависит от витамина К	Увеличено, зависит от витамина К	Норма
Альбумин	Снижен при хроническом заболевании	Норма	Норма
Желчные кислоты	От незначительного до значительного повышения	От незначительного до значительного повышения	Норма

Chachoo sa bhhmahnel

