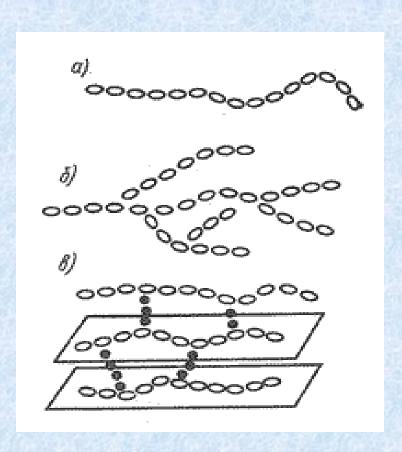
Структура полимеров. Свойства полимеров. Свойства полимеров в текучем состоянии.

Захарова Екатерина Константиновна, кандидат химических наук

Классификация полимеров


Полимеры

природные

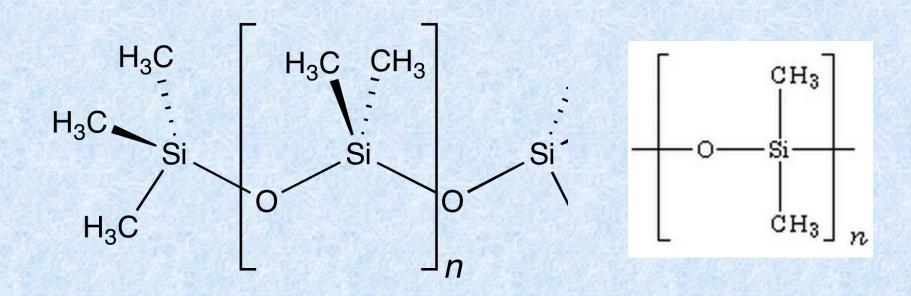
синтетические

- Полимерами называются вещества, макромолекулы которых состоят из многочисленных элементарных звеньев (мономеров) одинаковой структуры. Молек. масса >5 · 10³ до 10⁶ а.е.м.
- <u>Синтетические полимеры</u> группа веществ, получаемых синтезом продуктов нефтепереработки

Классификация полимеров в зависимости от формы и строения

• а) линейные

Длинные зигзагообразные молекулы(глобулы)


• б) разветвленные

Молекулы имеют боковые разветвления

• в) пространственные

соединены ковалентными связями в поперечном направлении к основной цепи

Полидиметилсилоксан

Типы полимеров

Итальянская фирма «Schiratti» изготовляет из изотактического полипропилена стоматологический базисный материал Valplast

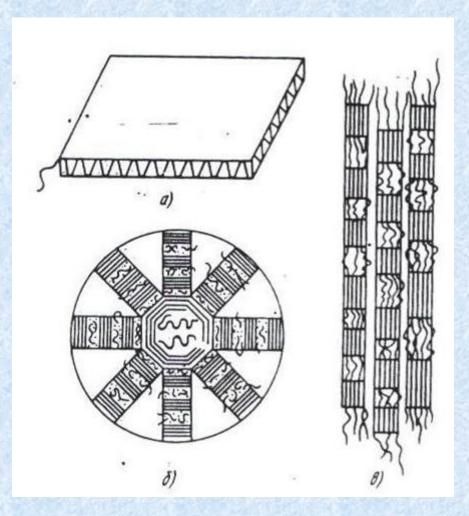
В СИЦ входит полиакриловая кислота

$$\begin{array}{c} \text{COOH} & \text{COOH} \\ \color{red} \sim \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} \sim \\ 0 = \text{C} - \text{O} - \text{Ca} - \text{O} - \text{C} = \text{O} \\ \color{red} \leftarrow \text{Ca} \\ \color{red} \leftarrow \text{COOH} \\ \color{red} \leftarrow \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} \sim \\ \color{red} \leftarrow \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} \sim \\ \color{red} \leftarrow \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} \sim \\ \color{red} \leftarrow \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} \sim \\ \color{red} \leftarrow \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} \sim \\ \color{red} \leftarrow \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} \sim \\ \color{red} \leftarrow \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} \sim \\ \color{red} \leftarrow \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} \sim \\ \color{red} \leftarrow \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} \sim \\ \color{red} \leftarrow \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} \sim \\ \color{red} \leftarrow \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH} \sim \\ \color{red} \leftarrow \text{CH}_2 - \text{CH}$$

Классификация полимеров по составу

• Карбоцепные

Основные цепи содержат атомы С

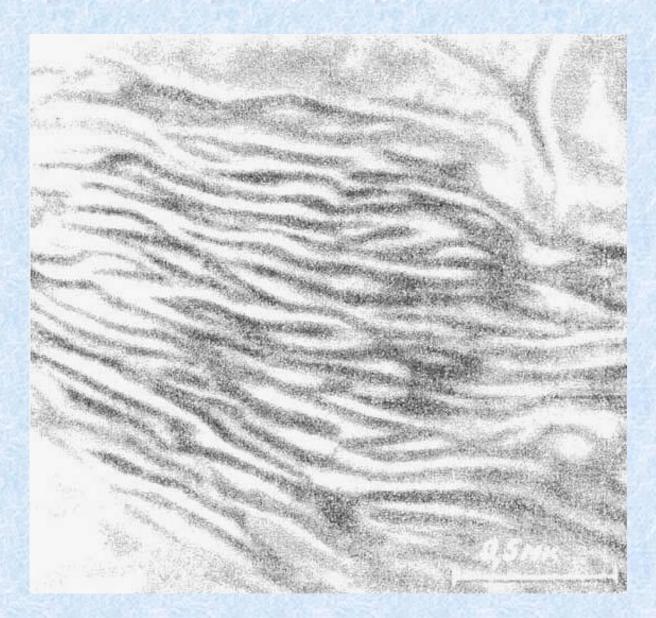

• Гетероцепные

Основные цепи содержат атомы C, N, S, O

• Элементоорганические

Основные цепи содержат атомы AI, Ti, Si

Надмолекулярная структура


Надмолекулярные структуры полимеров:

а – схема пластинчатого единичного кристалла;

б – схема сферолита;

в – схема фибриллы, состоящей из трех микрофибрилл

Фибриллярная структура полиакрилата

Кристаллическая и аморфная структуры полимеров

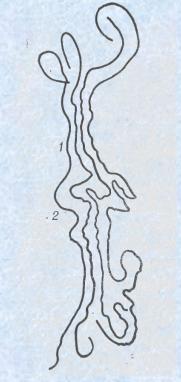
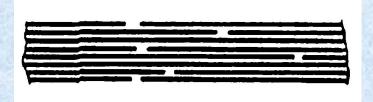



Схема структуры линейного полимера: 1 — область с кристаллическим строением; 2- область с аморфным строением

Пачка

Пачка с аморфным участком



Свойства полимеров. Определяются тремя основными факторами:

- Мономерные единицы связаны в длинные цепи У них нет свободы независимого трансляционного движения Полимерные системы бедны энтропией.
- 2. Число мономерных единиц в цепи велико, N >> 1.
- 3. Полимерные цепи гибкие.

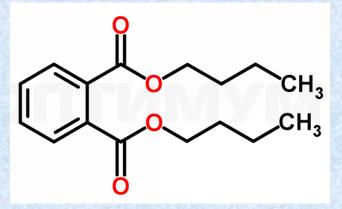
Свойства полимеров

Термомеханические кривые аморфных и кристаллических полимеров:

Старение полимеров

Старение полимеров, - необратимое изменение свойств полимеров под действием тепла, кислорода, солнечного света, озона, ионизирующих излучений и др.

Типы полимеров


термопластичные	термореактивные	
Линейные полимеры	Сетчатые полимеры	
3	型	
Отсутствуют прочные связи между отдельными цепями	Существуют прочные связи между отдельными цепями	
Легко плавятся, используются для переплавки	С трудом плавятся, не подвер- гаются переплавке	
Например: полиэтилен, плек- сиглас (полиметилметакрилат)	Например: фенолформальде- гидные смолы, эбонит	

Пластификация

- 1) совмещаться с полимером;
- 2) обладать малой летучестью;
- 3) быть нетоксичными;
- 4) не иметь запаха и вкуса;
- 5) быть бесцветными;
- 6) быть химически стойкими;
- 7) не реагировать с другими ингредиентами;
- 8) не мигрировать на поверхности изделия.

Диоктилфталат

Себацинаты

Дибутилфталат

Биополимеры, используемые для профилактики и лечения болезней полости рта (антимикробные и противовирусные препараты)

NH₂

Гексорал

Гексэтиди́н (в старых источниках Гексетидин) — <u>антисептический</u> лекарственный препарат в виде раствора или аэрозоля для местного применения.

Противомикробное действие препарата связано с подавлением окислительных реакций метаболизма бактерий (антагонист тиамина). Препарат обладает широким спектром антибактериального и противогрибкового действия, в частности в отношении грамположительных бактерий и грибов рода Candida, однако препарат может также оказывать эффект при лечении инфекций, вызванных например, Pseudomonas aeruginosa или Proteus.

Йокс

Комбинированный препарат для местного применения при заболеваниях полости рта и ЛОР-органов. При контакте с кожей или слизистыми оболочками выделяет йод; оказывает антисептическое и противовоспалительное действие. Препарат обладает широким спектром противомикробного действия. Активен в отношении бактерий, грибов, вирусов, простейших.

Активные вещества: Повидон-йод и аллантоин Интерфероны

Интерфероны — общее название ряда <u>белков</u> со сходными свойствами, выделяемых <u>клетками</u> организма в ответ на вторжение <u>вируса</u>, некоторые бактериальные вещества и низкомолекулярные химические соединения.

Интерфероны индуцируют либо активируют определённые клеточные белки, блокирующие репликацию вируса.

Прополис

В среднем прополис состоит из 50% смолообразных компонентов (флавоноиды, ароматические кислоты и их эфиры), 30% воска (жирные кислоты, спирты и их эфиры), 10% эфирного и ароматического масел, 5% цветочной пыльцы (свободные аминокислоты и белки) и 5% других субстанций (минеральные вещества, кетоны, лактоны, хиноны, стероиды, витамины и caxapa).

Зубные пасты

Основные компоненты

Абразивные

Пенообразующие

Связующие

Активные компоненты

Дополнительные компоненты

Ароматизаторы

Подсластители

Красители

Основные компоненты

Абразивные

Аэросил

Диоксид кремния

Алюмосиликаты

Гидроксид кремния

Фосфат кальция

Основные компоненты

Пенообразующие

Лаурилсульфат натрия

Бетаины

Основные компоненты

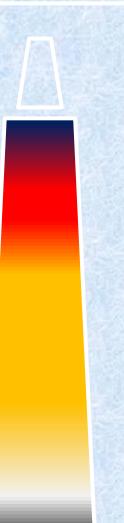
Связующие

Пектин

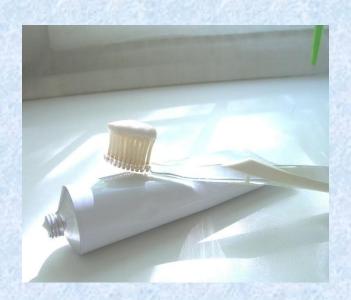
Агар-агар

Альгинат

натрия


Глицерин

Декстран


Основные компоненты

Активные компоненты

- Антимикробные
- Минералы и микроэлементы
- Экстракты трав и растений
- Ферменты
- Прополис
- Фториды
- Лактат алюминия

Дополнительные компоненты

Ароматизаторы

Подсластители

Красители

Классификация

Гигиенические

Очищающие

Дезодорирующие

Лечебно-профилактические

Против кариеса

С фторидами

Без фторидов

Против чувствительности

Противовоспалите

Отбеливающие

Органические

Комплексные

Значение фтора для зубов

Влияние поступающего извне фторида на эмаль зубов зависит от того, когда происходит это воздействие.

Если фторид поступает

до прорезывания зубов, то:

- увеличивается размер кристаллов гидроксиапатита
- снижается содержание карбонатов
- в гидроксиапатите происходит замещение (OH)-групп
- на ионы фтора с образованием кристаллов фторапатита
- эмаль становится более прочной, фиссуры менее глубокими и более широкими

после прорезывания зубов, то:

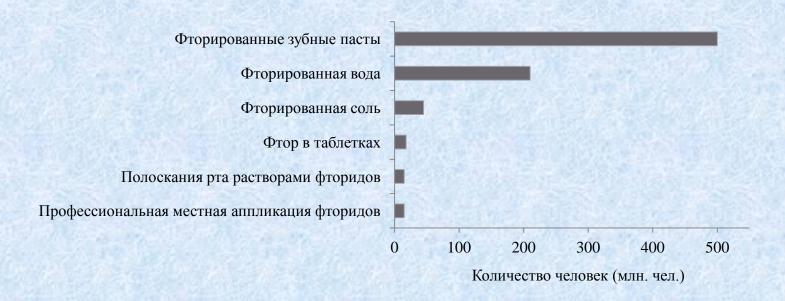
- снижается растворимость эмали
- происходит реминерализация частично деминерализованной эмали

Содержание фторидов в питьевой воде в Волгоградском регионе⁴

Населенный пункт, район	Содержание фторида в питьевой воде, мг/л	Характеристика
г. Волгоград (Центральный район)	0,22	Ниже нормы
г. Волгоград (Тракторозаводский район)	0,2	Ниже нормы
г. Волгоград (Краснооктябрьский район)	0,21	Ниже нормы
г. Волгоград (Дзержинский район)	0,2	Ниже нормы
г. Волгоград (Красноармейский район)	0,2-0,22	Ниже нормы
Светлый Яр	0,2	Ниже нормы
г. Елань	0,68	Норма
г. Городище	0,18-0,49	Ниже нормы
г. Суровикино	0,6	Норма

Характеристика согласно Гигиеническим нормативам содержания фтора в питьевой воде:

оптимальное: 0,7-1,2 мг/л нижняя граница нормы: 0,5 мг/л верхняя граница нормы: 1,5 мг/л

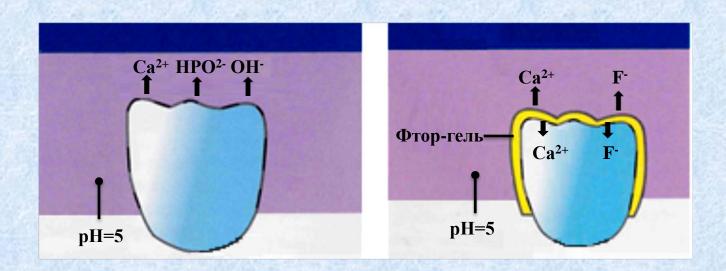

⁴Актуальные вопросы современной стоматологии: Материалы конференции, посвященной 75-летию Волгоградского государственного медицинского университета, 45-летию кафедры терапевтической стоматологии и 40-летию кафедры ортопедической стоматологии / Под общ. ред. акад. В.И. Петрова. − Волгоград: ООО «Бланк», 2010. − 248 с.: илл. − Том № 67.

Использование фторидов в массовой профилактике кариеса зубов

Две стратегии фторпрофилактики (по ВОЗ, 1994)

- •Постоянное неинтенсивное воздействие фторидов
- •Периодические воздействия высококонцентрированных фторидов

Использование различных методов коммунальной профилактики населением мира (ВОЗ, 1994)



Механизм действия фторидов

Рисунок 1а — При кислотности ниже pH=5 кальций и другие элементы начинают растворяться из поверхностного слоя эмали. Это пусковой момент развития кариеса.

$$CaCO_3+2.10^+ > Ca^{2+}+10_2O+CO_2$$

Рисунок 1б — Поверхность зуба покрыта фтористым гелем, из которого в поверхность эмали проникает фтор, связывается там с кальцием, и препятствует растворению эмали даже при высокой кислотности.

Взаимодействие фторидов с эмалью зуба

Гидроксиапатит — $\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2$ в эмали зуба 75% — самый распространенный минеральный компонент эмали зуба. При действии на эмаль зуба низких доз фтора происходит замещение гидроксильных групп на фтор и образуется фторапатит, который превосходит и по прочности и по кислотоустойчивости гидроксиапатит.

Фторапатит является наиболее кариесрезистентным апатитом эмали.

$$Ca_{10}(PO_4)_6(OH)_2 + 2F = Ca_{10}(PO_4)_6F_2 + 2(OH)^2$$

Спасибо за внимание