

Introduction

- The determination of the structure of an organic compound involves:
 - 1. Isolation and purification of the compound
 - Qualitative analysis of the elements present in the compound
 - Determination of the molecular formula of the compound
 - Determination of the functional group present in the compound

Introduction

The general steps to determine the structure of an organic compound

<u>Isolation and Purification of</u> <u>Organic Compounds</u>

- These techniques include:
 - 1. Filtration
 - 2. Centrifugation
 - 3. Crystallization
 - 4. Solvent extraction
 - 5. Distillation

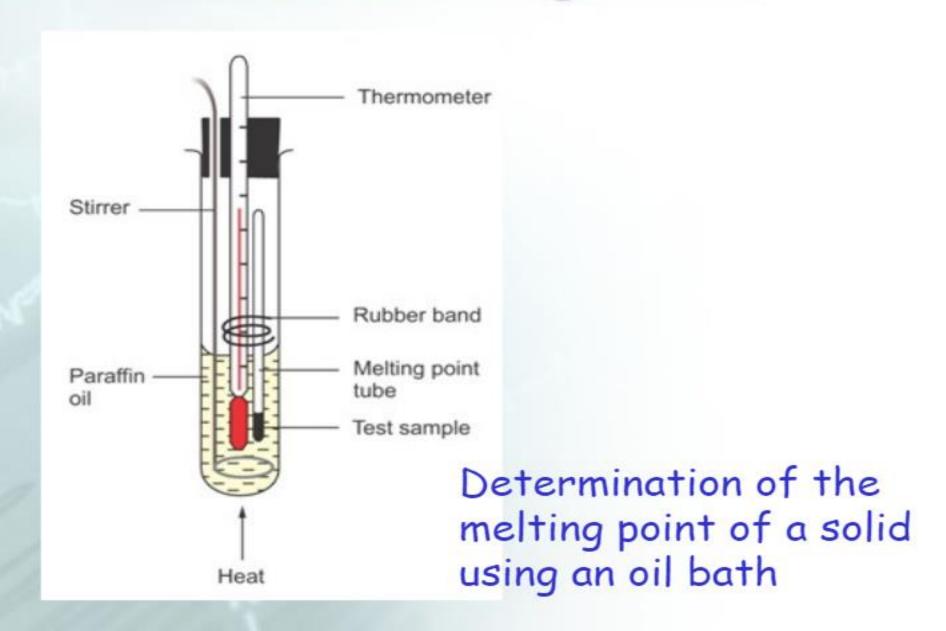
- 5. Fractional distillation
- 6. Sublimation
- 7. Chromatography

Isolation and Purification of Organic Compounds

- The selection of a proper technique
 - depends on the particular differences in physical properties of the substances present in the mixture

A summary of different techniques of isolation and purification

	Technique	Aim
	(a) Filtration	To separate an insoluble solid from a liquid (slow)
	(b) Centrifugation	To separate an insoluble solid from a liquid (fast)
7	(c) Crystallization	To separate a dissolved solute from its solution
	(d) Solvent extraction	To separate a component from a mixture with a suitable solvent
	(e) Distillation	To separate a liquid from a solution containing non-volatile solutes


A summary of different techniques of isolation and purification

Technique	Aim
(f) Fractional distillation	To separate miscible liquids with widely different boiling points
(g) Sublimation	To separate a mixture of solids in which only one can sublime
(h) Chromatography	To separate a complex mixture of substances

Tests for Purity

- If the substance is a solid,
 - its purity can be checked by determining its melting point
- If it is a liquid,
 - its purity can be checked by determining its boiling point

- To determine the melting point of a solid,
 - some of the dry solid is placed in a thin-walled glass melting point tube
- The tube is attached to a thermometer

- A pure solid has a sharp melting point
 - melting occurs within a narrow temperature range (usually less than 0.5°C)
- An impure solid does not have a sharp melting point
 - melts gradually over a wide temperature range

- The presence of impurities lowers the melting point of a solid
- Melting point is a useful indication of the purity of a substance

- The boiling point of a liquid can be determined by using the distillation apparatus
- The temperature at which the liquid boils steadily is its boiling point
- A flammable liquid should be heated in a water bath, instead of heated with a naked flame

- The boiling point of a pure liquid is quite sharp
- The presence of non-volatile solutes such as salts raises the boiling point of a liquid

- Qualitative analysis of an organic compound is
 - to determine what elements are present in the compound

Determination of Empirical Formula and Molecular Formula from Analytical Data

- After determining the constituent elements of a particular organic compound
 - perform quantitative analysis to find the percentage composition by mass of the compound
 - the masses of different elements in an organic compound are determined

- After determining the percentage composition by mass of a compound,
 - the empirical formula of the compound can be calculated

The empirical formula of a compound is the formula which shows the simplest whole number ratio of the atoms present in the compound

- When the relative molecular mass and the empirical formula of the compound are known,
 - the molecular formula of the compound can be calculated

The molecular formula of a compound is the formula which shows the actual number of each kind of atoms present in a molecule of the compound

- The physical properties of a compound include its colour, odour, density, solubility, melting point and boiling point
- The physical properties of a compound depend on its molecular structure

- From the physical properties of a compound,
 - obtain preliminary information about the structure of the compound

- e.g.
 - → Hydrocarbons have low densities, often about 0.8 g cm⁻³
 - Compounds with functional groups have higher densities

- The densities of most organic compounds are < 1.2 g cm⁻³
- Compounds having densities > 1.2 g cm⁻³ must contain multiple halogen atoms

Organic	Density	Melting point and	Solub	ility
compound	at 20°C	boiling point	In water or highly polar solvents	In non- polar organic solvents
Hydrocarbo ns (saturated and unsaturated)	All have densities < 0.8 g cm ⁻³	 Generally low but increases with number of carbon atoms in the molecule Branched-chain hydrocarbons have lower boiling points but higher melting points than the corresponding straight-chain isomers 	Insoluble	Soluble

Organic	Density at	Melting point and	Solubility	
compound	20∘C	boiling point	In water or highly polar solvents	In non- polar organic solvents
Aromatic hydrocarbons	Between 0.8 and 1.0 g cm ⁻³	Generally low	Insoluble	Soluble

Organic	Density at	boiling point	Solubility	
compound	20°C		In water or highly polar solvents	In non- polar organic solvents
Halo- alkanes	 0.9 - 1.1 g cm⁻³ for chloro- alkanes >1.0 g cm⁻³ for bromo- alkanes and iodo- alkanes 	 Higher than alkanes of similar relative molecular masses (∵ haloalkane molecules are polar) All haloalkanes are liquids except halomethanes Both the m.p. and b.p. increase in the order: RCH₂F < RCH₂Cl < RCH₂Br < RCH₂I 	Insoluble	Soluble

Organic	Density at	Melting point and	Solubility	
comp- ound	20°C	boiling point	In water or highly polar solvents	In non- polar organic solvents
Alcohols	 Simple alcohols are liquids and alcohols with > 12 carbons are waxy solids 	 Much higher than hydrocarbons of similar relative molecular masses (∵ formation of hydrogen bonds between alcohol molecules) 	• Lower members: Completely miscible with water (: formation of hydrogen bonds between alcohol molecules and water molecules)	Soluble

Organic	Density at	t Melting point and boiling point	Solubility	
comp- ound	20°C		In water or highly polar solvents	In non- polar organic solvents
Alcohols	All simple alcohols have densities < 1.0 g cm ⁻³	Straight-chain alcohols have higher b.p. than the corresponding branched-chain alcohols	• Solubility decreases gradually as the hydrocarbon chain lengthens	Soluble

Organic	Density at	Melting point and	Solubilit	у
comp- ound	20°C	boiling point	In water or highly polar solvents	In non- polar organic solvents
Carbonyl comp- ounds (alde- hydes and ketones)	• <1.0 g cm ⁻³ for aliphatic carbonyl compounds	Higher than alkanes but lower than alcohols of similar relative molecular masses (Molecules of aldehydes or ketones are held together by strong dipole-dipole interactions but not hydrogen bonds)	• Lower members: Soluble in water (: the formation of hydrogen bonds between molecules of aldehydes or ketones and water molecules)	Soluble

Organic	Density at	Melting point and boiling point	Solubility	
comp- ound	20°C		In water or highly polar solvents	In non- polar organic solvents
Carbonyl comp- ounds (alde- hydes and ketones)	• > 1.0 g cm ⁻³ for aromatic carbonyl compounds		• Solubility decreases gradually as the hydrocarbon chain lengthens	Soluble

Organic	Density at	Melting point and	Solubility	
comp- ound	20°C	boiling point	In water or highly polar solvents	In non- polar organic solvents
Carbo- xylic acids	 Lower members have densities similar to water Methanoic acid has a density of 1.22 g cm⁻³ 	Higher than alcohols of similar relative molecular masses (: the formation of more extensive intermolecular hydrogen bonds)	 First four members are miscible with water in all proportions Solubility decreases gradually as the hydrocarbon chain lengthens 	Soluble

	Density at	ensity at 20°C Melting point and boiling point	Solubility	
	20°C		In water or highly polar solvents	In non- polar organic solvents
Esters	Lower members have densities less than water	Slightly higher than hydrocarbons but lower than carbonyl compounds and alcohols of similar relative molecular masses	Insoluble	Soluble

Organic	Density at	Melting point and boiling point	Solubility	
comp- ound	20°C		In water or highly polar solvents	In non- polar organic solvents
Amines	Most amines have densities less than water	Higher than alkanes but lower than alcohols of similar relative molecular masses	 Generally soluble Solubility decreases in the order: 1° amines > 2° amines > 3° amines 	Soluble

Organic comp- ound	Density at 20°C	Melting point and boiling point	Solubility	
			In water or highly polar solvents	In non- polar organic solvents
Amines		 1º and 2º amines are able to form hydrogen bonds with each other but the strength is less than that between alcohol molecules (N—H bond is less polar than O — H bond) 		

Physical properties of some common organic compounds

Organic	Density at	Melting point and	Solubility	y
comp- ound	20°C	boiling point	In water or highly polar solvents	In non- polar organic solvents
Amines		• 3° amines have lower m.p. and b.p. than the isomers of 1° and 2° amines (∵ molecules of 3° amines cannot form intermolecular hydrogen bonds)		

Structural Information from Chemical Properties

- The molecular formula of a compound
 - does not give enough clue to the structure of the compound
- Compounds having the same molecular formula
 - may have different arrangements of atoms and even different functional groups

Structural Information from Chemical Properties

e.g.

The molecular formula of C₂H₄O₂ may represent a carboxylic acid or an ester:

$$H-C-O-CH_3$$

Methyl methanoate

Structural Information from Chemical Properties

- The next stage is
 - to find out the functional group(s) present
 - to deduce the actual arrangement of atoms in the molecule

Organic compound	Test	Observation
Saturated hydrocarbons	 Burn the saturated hydrocarbon in a non-luminous Bunsen flame 	• A blue or clear yellow flame is observed

Organic compound	Test	Observation
Unsaturated hydrocarbons (C = C, C ≡ C)	Burn the unsaturated hydrocarbon in a non-luminous Bunsen flame	A smoky flame is observed
	 Add bromine in 1,1,1- trichloroethane at room temperature and in the absence of light 	Bromine decolourizes rapidly
	 Add 1% (dilute) acidified potassium manganate(VII) solution 	 Potassium manganate(VII) solution decolourizes rapidly

Organic compound	Test	Observation
Haloalkanes (1°, 2° or 3°)	 Boil with ethanolic potassium hydroxide solution, then acidify with excess dilute nitric(V) acid and add silver nitrate(V) solution 	 For chloroalkanes, a white precipitate is formed For bromoalkanes, a pale yellow precipitate is formed For iodoalkanes, a creamy yellow precipitate is formed

Organic compound	Test	Observation
Halobenzenes	 Boil with ethanolic potassium hydroxide solution, then acidify with excess dilute nitric(V) acid and add silver nitrate(V) solution 	No precipitate is formed

Organic compound	Test	Observation
Alcohols (—OH)	Add a small piece of sodium metal	A colourless gas is evolved
	Esterification: Add ethanoyl chloride	 The temperature of the reaction mixture rises A colourless gas is evolved

Organic compound	Test	Observation
Alcohols (—OH)	Add acidified potassium dichromate(VI) solution	 For 1° and 2° alcohols, the clear orange solution becomes opaque and turns green almost immediately For 3° alcohols, there are no observable changes

. . . .

Organic compound	Test	Observation
Alcohols (—OH)	• lodoform test for: OH -C-CH ₃ H	A yellow precipitate is formed
	Add iodine in sodium hydroxide solution	

Organic compound	Test	Observation
Alcohols (—OH)	Lucas test: add a solution of zinc chloride in concentrated hydrochloric acid	 For 1° alcohols, the aqueous phase remains clear For 2° alcohols, the clear solution becomes cloudy within 5 minutes For 3° alcohols, the aqueous phase appears cloudy immediately

Organic compound	Test	Observation
Ethers (— O —)	 No specific test for ethers but they are soluble in concentrated sulphuric(VI) acid 	

Organic compound	Test	Observation
Aldehydes	Add aqueous sodium hydrogensulphate(IV)	Crystalline salts are formed
(Н	Add 2,4- dinitrophenylhydrazine	 A yellow, orange or red precipitate is formed
	Silver mirror test: add Tollens' reagent (a solution of aqueous silver nitrate in aqueous ammonia)	A silver mirror is deposited on the inner wall of the test tube

Organic compound	Test	Observation
Ketones (Add aqueous sodium hydrogensulphate(IV)	 Crystalline salts are formed (for unhindered ketones only)
	 Add 2,4- dinitrophenylhydrazine 	 A yellow, orange or red precipitate is formed
	• lodoform test for: O CH ₃ C	A yellow precipitate is formed
Add iodine in sodium hydroxide solution		

Organic compound	Test	Observation
Carboxylic acids (-c OH	Esterification: warm the carboxylic acid with an alcohol in the presence of concentrated sulphuric(VI) acid, followed by adding sodium carbonate solution	A sweet and fruity smell is detected
	Add sodium hydrogencarbonate	The colourless gas produced turns lime water milky

Organic compound	Test	Observation
Esters (-c o)	No specific test for esters but they can be distinguished by its characteristic smell	A sweet and fruity smell is detected

Organic compound	Test	Observation
Acyl halides $(-c < x)$	 Boil with ethanolic potassium hydroxide solution, then acidify with excess dilute nitric(V) acid and add silver nitrate(V) solution 	 For acyl chlorides, a white precipitate is formed For acyl bromides, a pale yellow precipitate is formed For acyl iodides, a creamy yellow precipitate is formed

Organic compound	Test	Observation
Amides (-c NH ₂	Boil with sodium hydroxide solution	The colourless gas produced turns moist red litmus paper or pH paper blue

Organic compound	Test	Observation
Amines (—NH ₂)	 1° aliphatic amines: dissolve the amine in dilute hydrochloric acid at 0 – 5 °C, then add cold sodium nitrate(III) solution slowly 	 Steady evolution of N₂(g) is observed
	 1º aromatic amines: add naphthalen-2-ol in dilute sodium hydroxide solution 	An orange or red precipitate is formed

Organic compound	Test	Observation
Aromatic compounds	Burn the aromatic compound in a non-	A smoky yellow flame with black soot
(()	luminous Bunsen flame	is produced
	Add fuming sulphuric(VI) acid	 The aromatic compound dissolves The temperature of the reaction mixture rises

Use of Infra-red Spectrocopy in the Identification of Functional Groups

- Electromagnetic radiation has dual property
 - i.e. the properties of both wave and particle
- Can be described as a wave occurring simultaneously in electrical and magnetic fields
- Can also be described as consisting of particles called quanta or photons

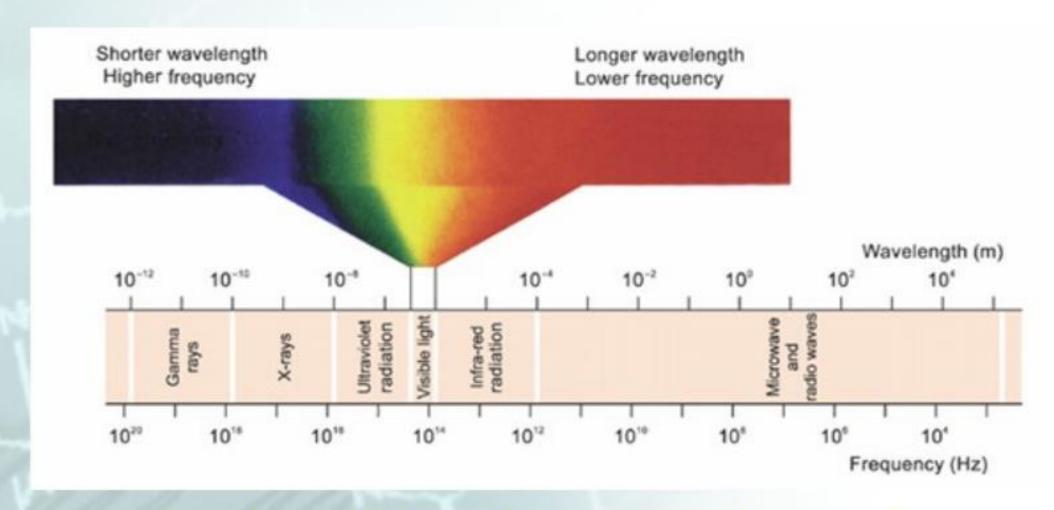
- All electromagnetic radiation travels through vacuum at the same velocity, 3 x 108 m s⁻¹
- The relationship between the frequency (ν)
 of an electromagnetic radiation, its
 wavelength (λ) and velocity (c) is:

$$/=\frac{C}{\lambda}$$

 The energy of a quantum of electromagnetic radiation is directly related to its frequency:

$$E = hv$$

where h is the Planck constant (i.e. 6.626×10^{-34} J s).


•
$$\therefore \ / = \frac{\lambda}{C}$$

the energy of a quantum of electromagnetic radiation is inversely proportional to its wavelength:

$$E = \frac{hc}{\lambda}$$

- Electromagnetic radiation of long wavelength has low energy
- Electromagnetic radiation of short wavelength has high energy

- Electromagnetic radiation of long wavelength has low energy
- Electromagnetic radiation of short wavelength has high energy

Regions of the electromagnetic spectrum

- When electromagnetic radiation falls onto a hydrogen atom,
 - the electron in the hydrogen atom will absorb a definite amount of energy
- The electron is excited from the ground state to a higher energy level

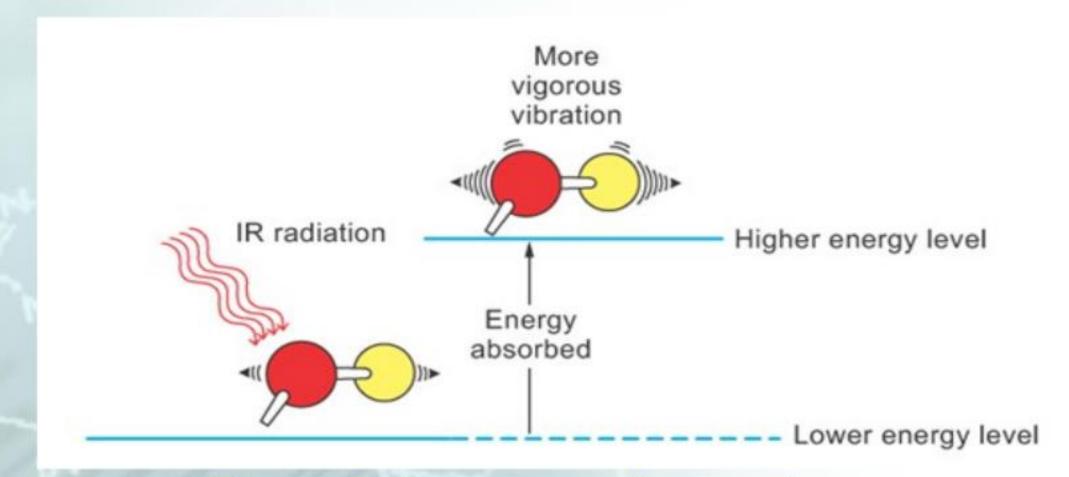
- The electron is unstable at a higher energy level
 - it will fall back to a lower energy level
- Excess energy is given out in the form of electromagnetic radiation

 The radiation emitted has the frequency as shown by the following relationship:

$$\Delta E = E_2 - E_1 = h_V = \frac{hc}{\lambda}$$

- The atomic spectrum of hydrogen is originated from
 - electron transitions between energy levels in a hydrogen atom

- In the case of molecules, the absorption of energy can
 - cause the excitation of electrons
 - increase the extent of vibration of the bonds and the speed of rotation of the molecule
- This is the basis of infra-red spectroscopy


Infra-red Spectroscopy

- Organic compounds absorb electromagnetic radiation in the IR region of the spectrum
 - → IR radiation does not have sufficient energy to cause the excitation of electrons

Infra-red Spectroscopy

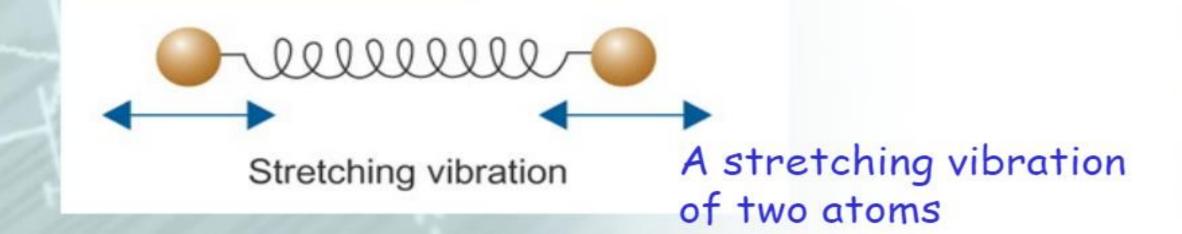
- IR radiation causes
 - atoms and groups of atoms of organic compounds to vibrate with increased amplitude about the covalent bonds that connect them

- These vibrations are quantized
 - the compounds absorb IR radiation of a particular amount of energy only

Effect of absorption of IR radiation on vibration of atoms in a molecule

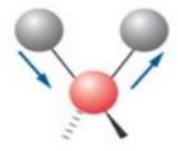
- Infra-red spectrometer is used to
 - measure the amount of energy absorbed at each wavelength of the IR region

An infra-red spectrometer

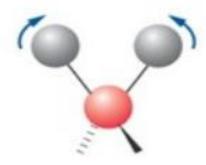

- A beam of IR radiation is passed through the sample
 - the intensity of the emergent radiation is carefully measured
- The spectrometer plots the results as a graph called infra-red spectrum
 - shows the absorption of IR radiation by a sample at different frequencies

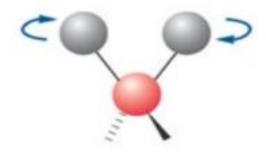

- The IR radiation is usually specified by its wavenumber (unit: cm⁻¹)
 - the reciprocal of wavelength
- Frequency and wavelength are related
 by the equation c = νλ
 - Wavenumber is a direct measure of frequency

- The IR radiation is usually specified by its wavenumber (unit: cm⁻¹)
 - the reciprocal of wavelength
- : Frequency and wavelength are related by the equation $c = v\lambda$
 - Wavenumber is a direct measure of frequency


- When the compound absorbs IR radiation of the exact energy required (or a particular wavelength or a particular frequency)
 - the excitation of a molecule from one vibrational energy level to another occurs only

- Molecules can vibrate in a variety of ways
- Two atoms joined by a covalent bond can undergo a stretching vibration where the atoms move back and forth as if they were joined by a spring




Symmetric stretching

Asymmetric stretching

An in-plane bending vibration (scissoring)

An out-of-plane bending vibration (twisting)

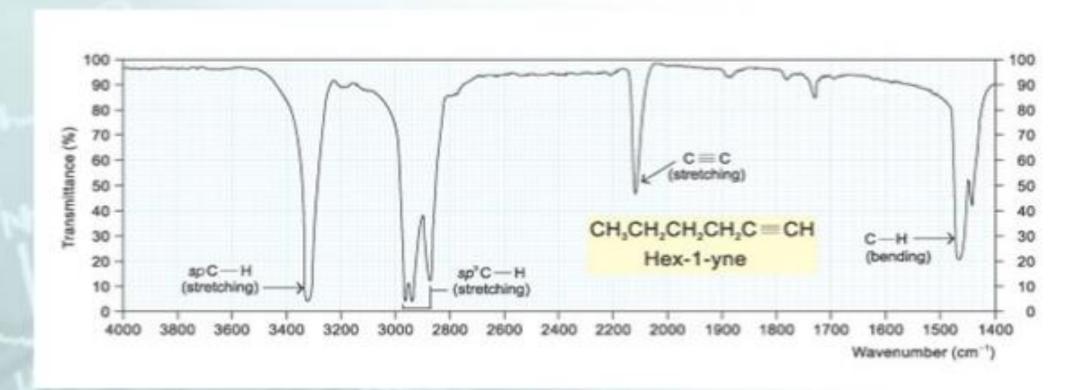
A variety of stretching and bending vibrations

- The frequency of a given stretching vibration of a covalent bond
 - depends on the masses of the bonded atoms and the strength of the bond
- Lighter atoms vibrate at higher frequencies than heavier ones

The stretching vibrations of single bonds involving hydrogen (C — H, O — H and N — H) occur at relatively high frequencies

Bond	Range of wavenumber (cm ⁻¹)	
С—Н	2840 - 3095	
0—H	3230 – 3670	
N — H	3350 – 3500	

Characteristic absorption wavenumbers of some single bonds in infra-red spectra


 Triple bonds are stronger and vibrate at higher frequencies than double bonds

Bond	Range of wavenumber (cm ⁻¹)	
C≡C	2070 – 2250	
C ≡ N	2200 – 2280	
C = C	1610 – 1680	
C = O	1680 – 1750	

Characteristic absorption wavenumbers of some double bonds and triple bonds in infra-red spectra

- The IR spectra of even relatively simple compounds contain many absorption peaks
- The possibility of two different compounds having the same IR spectrum is very small
- An IR spectrum has been called the "fingerprint" of a compound

 An IR spectrum is a plot of percentage of transmittance against wavenumber of IR radiation

The IR spectrum of hex-1-yne

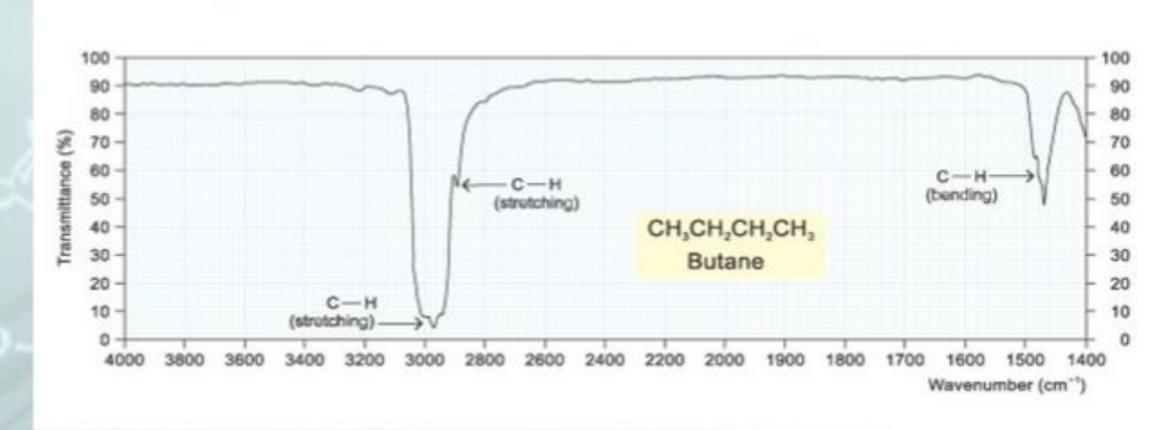
- 100% transmittance in the spectrum
 - implies no absorption of IR radiation

- When a compound absorbs IR radiation,
 - the intensity of transmitted radiation decreases
 - results in a decrease in percentage of transmittance
 - a dip in the spectrum
 - often called an absorption peak or absorption band

 In general, an IR spectrum can be split into four regions for interpretation purpose

The four regions of an IR spectrum

Range of wavenumber (cm ⁻¹)	Interpretation		
400 – 1500	Often consists of many complicated bands		
	 Unique to each compound Often called the fingerprint region Not used for identification of particular functional groups 		
1500 – 2000	Absorption of double bonds, e.g. C = C, C = O		
2000 – 2500	Absorption of triple bonds, e.g. C ≡ C, C ≡ N		
2500 – 4000	Absorption of single bonds involving hydrogen, e.g. C — H, O — H, N — H		


- The region between 4 000 cm⁻¹ and 1 500 cm⁻¹ is often used for
 - identification of functional groups from their characteristic absorption wavenumbers

Characteristic range of wavenumbers of covalent bonds in IR spectra

	Compound	Bond	Characteristic range of wavenumber (cm ⁻¹)
	Alkenes	C = C	1610 – 1680
	Aldehydes, ketones, acids, esters	C = 0	1680 – 1750
M	Alkynes	C = C	2070 – 2250
	Nitriles	C ≡ N	2200 – 2280
	Acids (hydrogen-bonded)	0 — H	2500 – 3300
	Alkanes, alkenes, arenes	С—Н	2840 – 3095
A STATE	Alcohols, phenols (hydrogen-bonded)	O—H	3230 – 3670
	Primary amines	N — H	3350 – 3500

Interpretation of IR Spectra

1. Butane

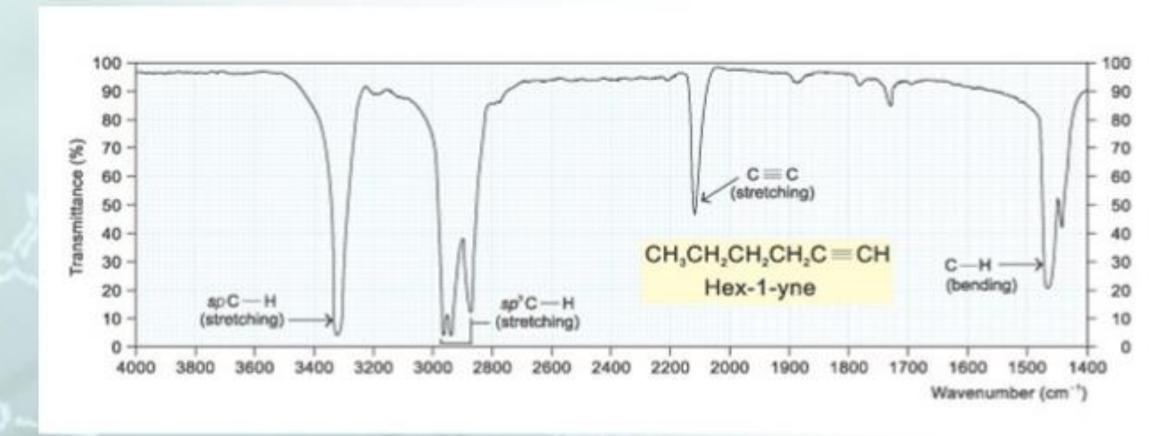
The IR spectrum of butane

1. Butane

Wavenumber (cm ⁻¹)	Intensity	Indication
2968	Very strong	C — H stretching
2890	Medium	
1468	Strong	C — H bending

Interpretation of the IR spectrum of butane

2. cis-But-2-ene

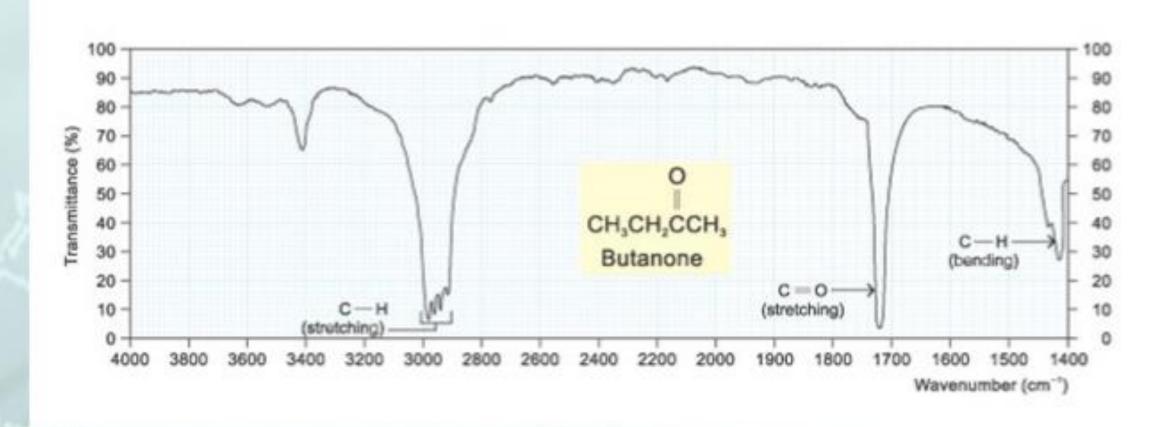

The IR spectrum of cis-but-2-ene

2. *cis*-But-2-ene

Wavenumber (cm ⁻¹)	Intensity	Indication
3044	Very strong	C — H stretching
3028	Very strong	(<i>sp</i> ² C — H)
2952	Very strong	C — H stretching (sp³ C — H)
1677	Medium	C = C stretchinh
1657	Medium	
1411	Strong	C — H bending

Interpretation of the IR spectrum of cis-but-2-ene

3. **Hex-1-yne**

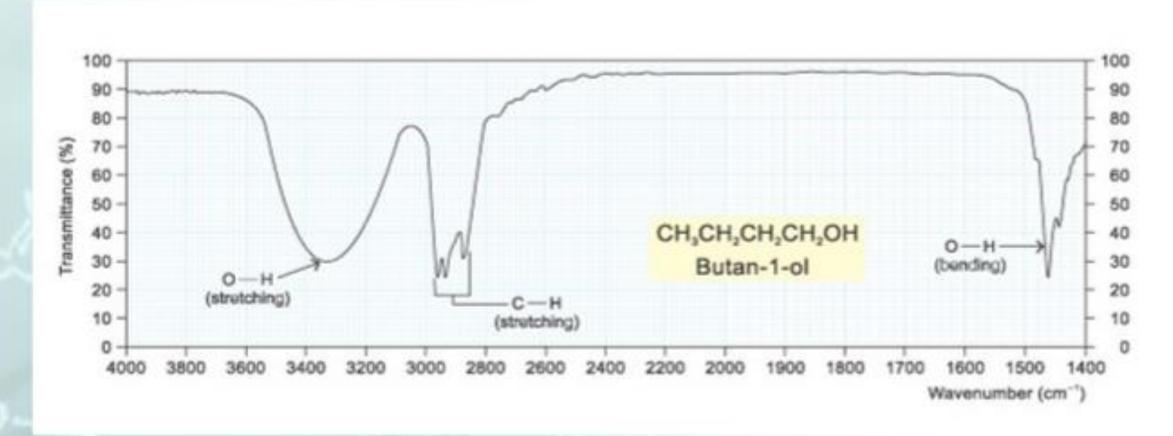

The IR spectrum of hex-1-yne

3. **Hex-1-yne**

Wavenumber (cm ⁻¹)	Intensity	Indication
3313	Very strong	C — H stretching (sp C — H)
2963	Very strong	C — H stretching
2938	Very strong	(<i>sp</i> ³ C — H)
2874	Strong	
2119	Strong	C = C stretching
1468	Strong	C — H bending (sp C — H)
1445	Medium	C — H bending (sp³ C — H)

Interpretation of the IR spectrum of hex-1-yne

4. Butanone

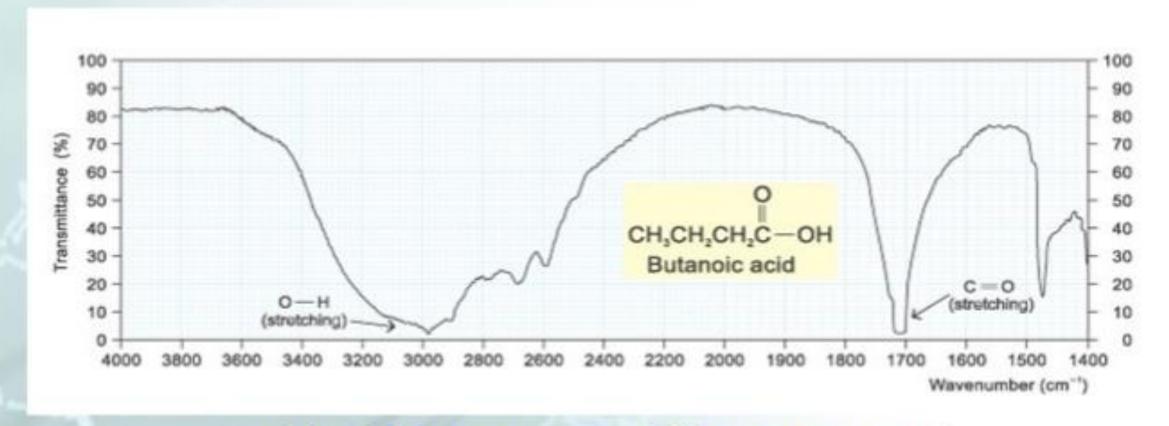

The IR spectrum of butanone

4. Butanone

Wavenumber (cm ⁻¹)	Intensity	Indication
2983	Strong	C — H stretching
2925	Strong	
1720	Very strong	C = O stretching
1416	Medium	C — H bending (shifted as adjacent to C = O)

Interpretation of the IR spectrum of butanone

5. Butan-1-ol


The IR spectrum of butan-1-ol

5. Butan-1-ol

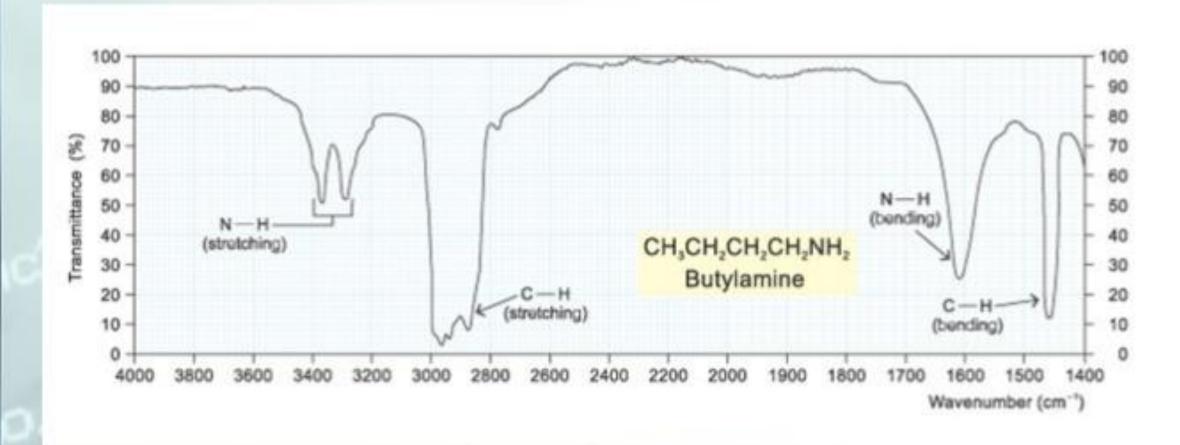
Wavenumber (cm ⁻¹)	Intensity	Indication
3330	Broad band	O — H stretching
2960	Medium	C — H stretching
2935	Medium	
2875	Medium	

Interpretation of the IR spectrum of butan-1-ol

6. Butanoic Acid

The IR spectrum of butanoic acid

6. Butanoic Acid

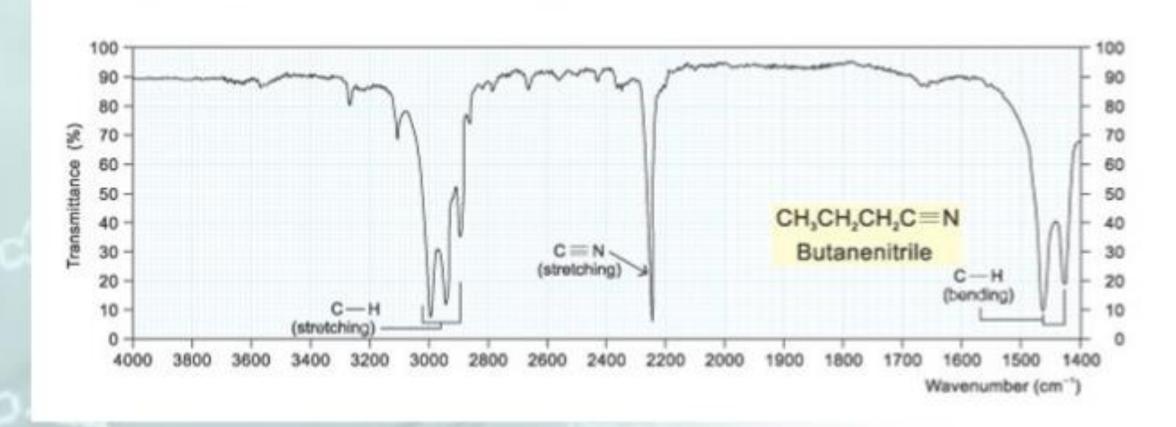

Wavenumber (cm ⁻¹)	Intensity	Indication
3100	Broad band	O — H stretching
1708	Strong	C = O stretching

Interpretation of the IR spectrum of butanoic acid

6. Butanoic Acid

- The absorption of the O H group in alcohols and carboxylic acids does not usually appear as a sharp peak
 - a broad band is observed
 - the vibration of the O H group is complicated by the hydrogen bonding formed between the molecules

7. Butylamine


The IR spectrum of butylamine

7. Butylamine

Wavenumber (cm ⁻¹)	Intensity	Indication
3371	Strong	N — H stretching
3280	Strong	
2960 – 2875	Weak	C — H stretching
1610	Medium	N — H bending
1475	Medium	C — H bending

Interpretation of the IR spectrum of butylamine

8. Butanenitrile

The IR spectrum of butanenitrile

8. Butanenitrile

Wavenumber (cm ⁻¹)	Intensity	Indication
2990 – 2895	Strong	C — H stretching
2246	Very strong	C = N stretching
1420	Strong	С—Н
1480	Strong	bending

Interpretation of the IR spectrum of butanenitrile

Strategies for the Use of IR Spectra in the Identification of Functional Groups

- Focus at the IR absorption peak at or above 1500 cm⁻¹
 - Concentrate initially on the major absorption peaks

Strategies for the Use of IR Spectra in the Identification of Functional Groups

- For each absorption peak, try to list out all the possibilities using a table or chart
 - Not all absorption peaks in the spectrum can be assigned

Strategies for the Use of IR Spectra in the Identification of Functional Groups

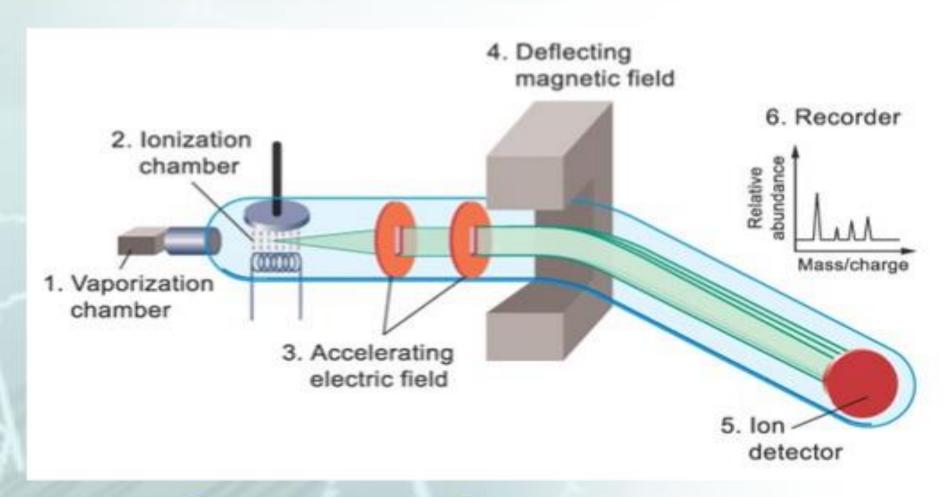
- The absence and presence of absorption peaks at some characteristic ranges of wavenumbers are equally important
 - → the absence of particular absorption peaks can be used to eliminate the presence of certain functional groups or bonds in the molecule

Limitation of the Use of IR Spectroscopy in the Identification of Organic Compounds

- Some IR absorption peaks have very close wavenumbers and the peaks always coalesce
- Not all vibrations give rise to strong absorption peaks

Limitation of the Use of IR Spectroscopy in the Identification of Organic Compounds

- Not all absorption peaks in a spectrum can be associated with a particular bond or part of the molecule
- Intermolecular interactions in molecules can result in complicated infra-red spectra


Use of Mass Spectra to Obtain Structural Information

- One of the most sensitive and versatile analytical tools
- More sensitive than other spectroscopic methods (e.g. IR spectroscopy)
- Only a microgram or less of materials is required for the analysis

In a mass spectrometric analysis, it involves:

- 1. the conversion of molecules to ions
- separation of the ions formed according to their mass-to-charge (m/e) ratio
 - m is the mass of the ion in atomic mass units and e is its charge

- Finally, the number of ions of each type (i.e. the relative abundance of ions of each type) is determined
- The analysis is carried out using a mass spectrometer

Components of a mass spectrometer

In the vaporization chamber,

- the sample is heated until it vaporizes
 - changes to the gaseous state

- The molecules in the gaseous state are bombarded with a beam of fast-moving electrons
 - Positively-charged ions called the molecular ions are formed
 - One of the electrons of the molecule is knocked off

 Molecular ions are sometimes referred to as the parent ion

$$M + e^- \longrightarrow M^{\ddagger} + 2e^-$$
Molecule Fast-moving Molecular electron ion

- one of the electrons is removed from the molecules during the ionization process
 - the molecular ion contains a single unpaired electron
 - the molecular ion is not only a cation, it is also a free radical

e.g.

if a molecule of methanol (CH₃OH) is bombarded with a beam of fast-moving electrons

the following reaction will take place:

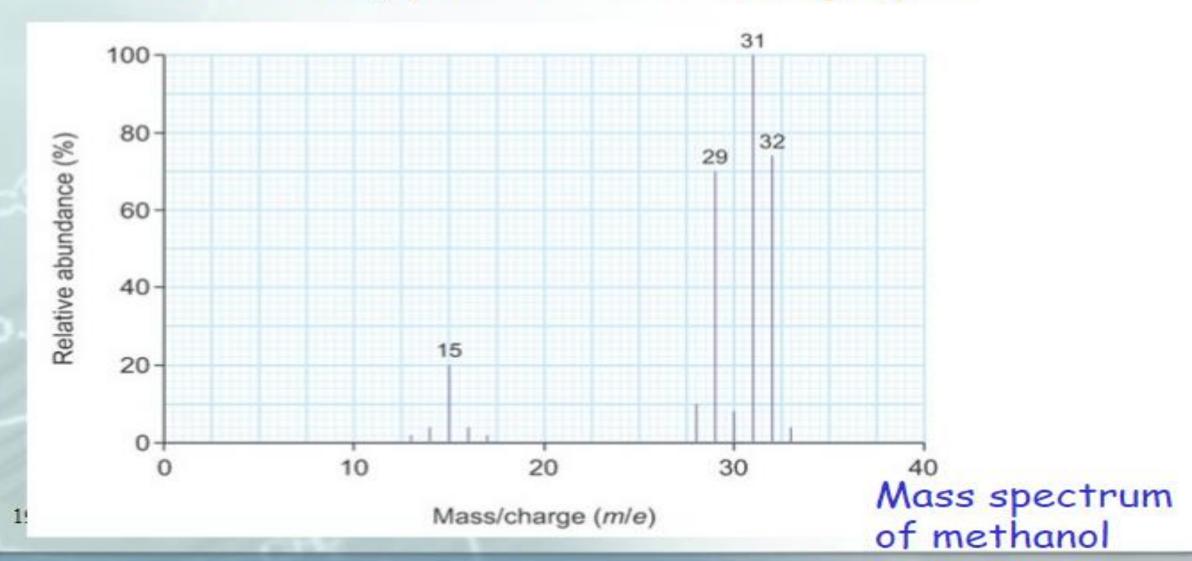
CH₃
$$\ddot{O}$$
H + $e^ \longrightarrow$ $\left[\text{CH}_3 \dot{O} \text{H} \right]^+$ + $2e^-$

Molecular ion of methanol $(m/e = 32)$

- The molecular ions formed in the ionization chamber are energetically unstable
 - undergo fragmentation
- Fragmentation can take place in a variety of ways
 - depend on the nature of the particular molecular ion

- The way that a molecular ion fragments
 - give us highly useful information about the structure of a complex molecule

- The positively charged ions formed are then accelerated by electric field and deflected by magnetic field
 - causes the ions to arrive the ion detector
- The lighter the ions, the greater the deflection

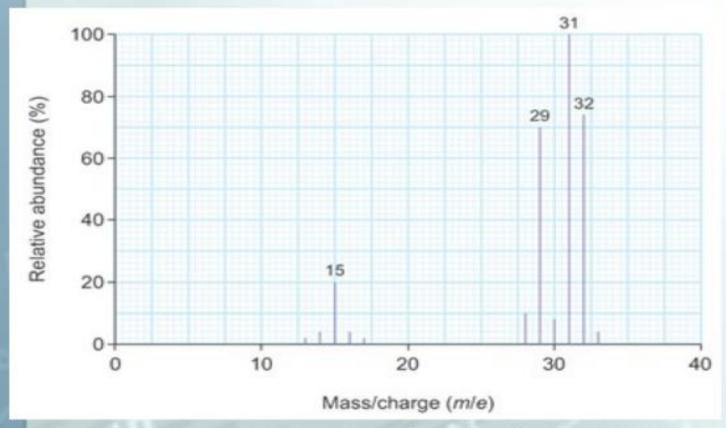

- Positively charged ions of higher charge have greater deflection
- lons with a high m/e ratio are deflected to smaller extent than ions with a low m/e ratio

- In the ion detector,
 - the number of ions collected is measured electronically
- The intensity of the signal is
 - → a measure of the relative abundance of the ions with a particular m/e ratio

- In the ion detector,
 - the number of ions collected is measured electronically
- The intensity of the signal is
 - → a measure of the relative abundance of the ions with a particular m/e ratio

Mass Spectrum

Generally published as bar graphs.


Mass Spectrum

Corresponding ion	m/e ratio
H ₃ C ⁺	15
H ≡ CO+	29
H ₂ C = OH ⁺	31
CH₃OH ⁺	32

Interpretation of the mass spectrum of methanol

- The molecular ions formed in the ionization chamber are energetically unstable
 - Some of them may break up into smaller fragments
 - Called the daughter ions

- These ionized fragments are accelerated and deflected by the electric field and magnetic field
- Finally, they are detected by the ion detector and
 - → their *m*/*e* ratios are measured
 - explains why there are so many peaks appeared in mass spectra

Mass spectrum of methanol

- The peak at m/e 31
 - the most intense peak
- Arbitrarily assigned an intensity of 100%
 - Called the base peak
 - Corresponds to the most common ion formed

- The peak at m/e 31
 - → corresponds to the ion H₂C = OH⁺
 - formed by losing one hydrogen atom from the molecular ion

$$\begin{bmatrix} H - C \overrightarrow{O} \overrightarrow{O} - H \end{bmatrix}_{+} \longrightarrow \begin{bmatrix} H - C = \overrightarrow{O} - H \end{bmatrix}_{+} + H \cdot C = \overrightarrow{O} - H$$

$$m/e = 32$$

- The ion H₂C = OH⁺ is a relatively stable ion
 - → : the positive charge is not localized on a particular atom
 - it spreads around the carbon and the oxygen atoms to form a delocalized system

$$H - C = O - H = H - C = O - H$$

$$H$$

$$H$$

$$m/e = 31$$

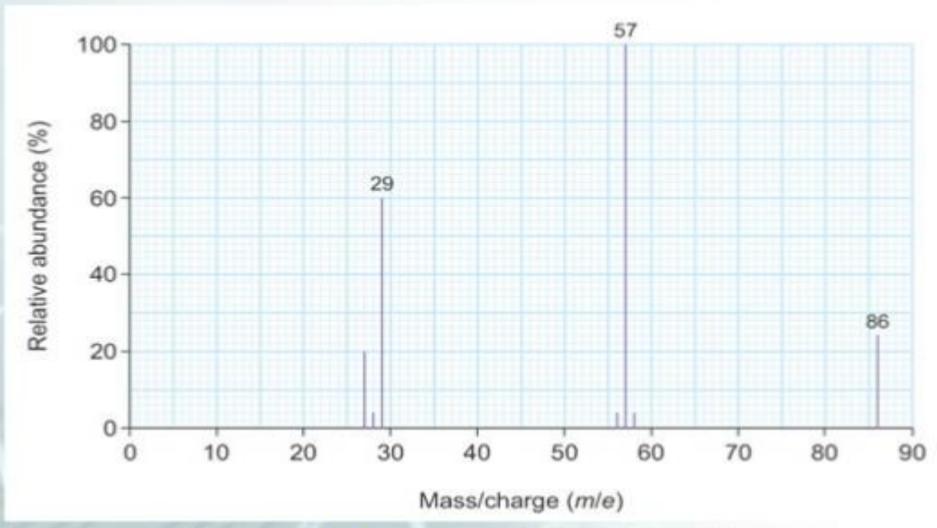
- The peak at m/e 29 corresponds to the ion
 HC = O⁺
 - formed by losing two hydrogen atoms from the ion H₂C = OH⁺

$$\begin{bmatrix} H - C = O - H \end{bmatrix}^{+} \longrightarrow \begin{bmatrix} H - C = O \end{bmatrix}^{+} + 2H$$

m/e = 31

m/e = 29

 The ion HC = O⁺ has two resonance structures:


$$H - C \stackrel{\longleftarrow}{=} \stackrel{+}{Q}^{+} \stackrel{+}{=} \stackrel{+}{=} \stackrel{+}{O}$$

$$m/e = 29$$

m/e = 32

- The peak at m/e 15 corresponds to the ion H₃C⁺
 - formed by the breaking of the C O bond in the molecular ion

m/e = 15

Mass spectrum of pentan-3-one

Corresponding ion	m/e ratio
CH ₃ CH ₂ ⁺	29
CH₃CH₂CO ⁺	57
CH ₃ CH ₂ COCH ₂ CH ₃ ⁺	86

Interpretation of the mass spectrum of pentan-3-one

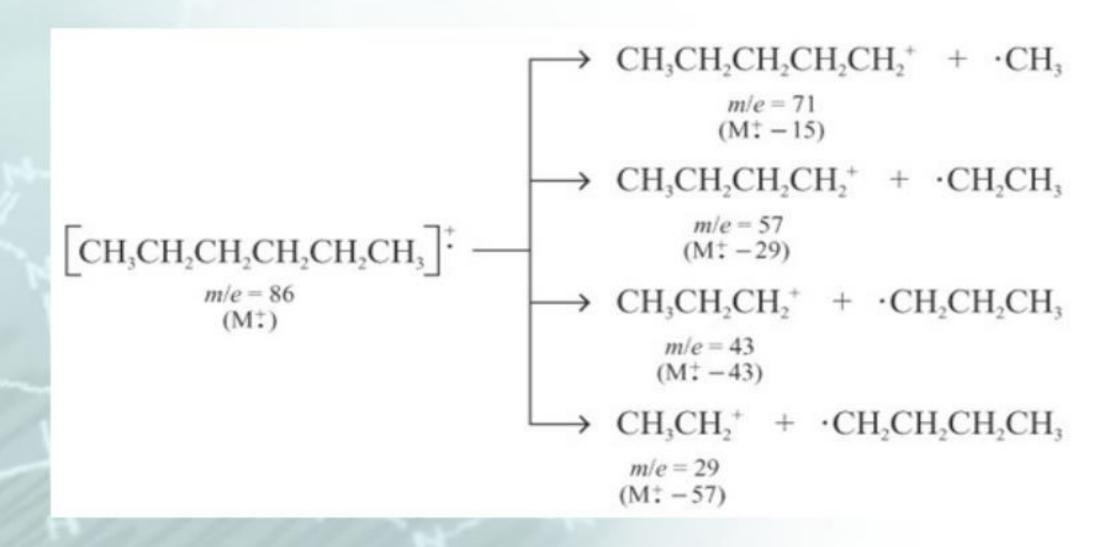
The fragmentation pattern of pentan-3-one is summarized below:

$$CH_{3}CH_{2} - \overset{\circ}{C} - CH_{2}CH_{3} \longrightarrow CH_{3}CH_{2} - \overset{\circ}{C} - CH_{2}CH_{3} \longrightarrow CH_{3}CH_{2} - \overset{\circ}{C} = 0; + \cdot CH_{2}CH_{3}$$

$$m/e = 86 \qquad m/e = 57$$

$$CH_{3}CH_{2} - \overset{\circ}{C} = 0; \longrightarrow CH_{3}CH_{2}^{+} + CO$$

$$m/e = 29$$


Fragmentation Pattern

1. Straight-chain Alkanes

- Simple alkanes tend to undergo fragmentation by
 - the initial loss of a CH₃ to give a peak at M⁺ - 15
 - This carbocation can then undergo stepwise cleavage down the alkyl chain

1. Straight-chain Alkanes

Take hexane as an example:

2. Branched-chain Alkanes

- Tend to cleave at the "branch point"
 - more stable carbocations are formed

2. Branched-chain Alkanes

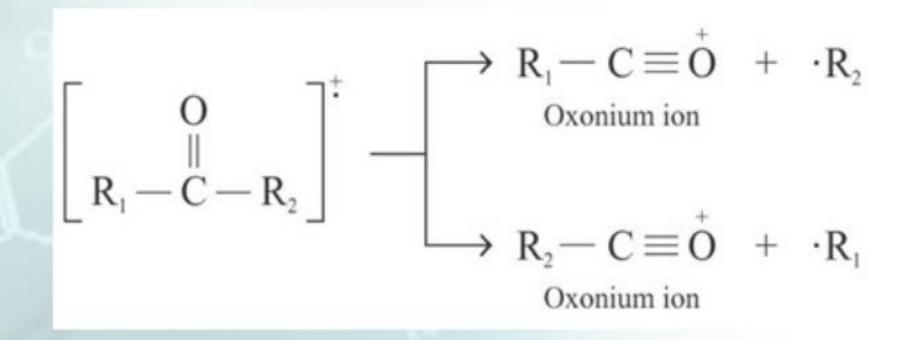
e.g.

$$\begin{bmatrix} CH_3 \\ | \\ CH_3CHCH_2CH_3 \end{bmatrix}^{+} \longrightarrow CH_3\overset{+}{CHCH_2CH_2} + \cdot CH_3$$

$$m/e = 72 \qquad m/e = 57$$

$$(M^{+}) \qquad (M^{+} - 15)$$

3. Alkyl-substituted Aromatic Hydrocarbons


e.g.

4. Aldehydes and Ketones

- Frequently undergo fragmentation by losing one of the side chains
 - generate the substituted oxonium ion
 - often represents the base peak in the mass spectra

4. Aldehydes and Ketones

5. Esters, Carboxylic Acids and Amides

- Often undergo cleavage that involves the breaking of the C—X bond
 - form substituted oxonium ions as shown below:

$$\begin{bmatrix} O \\ \parallel \\ R_1 - C - X \end{bmatrix}^{\ddagger} \longrightarrow R_1 - C \equiv \overset{+}{O} + \cdot X$$
Oxonium ion

(where X = OH, OR, NH_2 , NHR, NR_2)

5. Esters, Carboxylic Acids and Amides

- For carboxylic acids and unsubstituted amides,
 - characteristic peaks at m/e 45 and 44 are observed respectively

$$\begin{bmatrix} O \\ R_1 - C - OH \end{bmatrix}^{\frac{1}{2}} \longrightarrow HO - C \equiv O + \cdot R_1$$

$$m/e = 45$$

$$\begin{bmatrix} O \\ R_1 - C - NH_2 \end{bmatrix}^{\frac{1}{2}} \longrightarrow H_2N - C \equiv O + \cdot R_1$$

$$m/e = 44$$

214

<u>b. Aiconois</u>

- In addition to the loss of a proton and the hydroxyl radical,
 - alcohols tend to lose one of the α alkyl groups (or α hydrogen atoms)
 - form oxonium ions

$$\begin{bmatrix} R_1 \\ R_2 - C - OH \\ R_3 \end{bmatrix}^{\frac{1}{2}} \longrightarrow \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} C = O_+ H + \cdot R_3$$

6. Alcohols

- For primary alcohols,
 - the peak at m/e 31, 45, 59 or 73 often appears
 - depends on what the R₁ group is

$$\begin{bmatrix} R_1 - C - OH \\ H \end{bmatrix}^{\frac{1}{2}} \longrightarrow \begin{bmatrix} R_1 \\ H \end{bmatrix} C = O_+ H + H$$

$$m/e = 31, 45, 59, 73, \text{ etc.}$$

7. Haloalkanes

Haloalkanes simply break at the C — X bond

$$\begin{bmatrix} R - C - X \\ H \end{bmatrix}^{\frac{1}{2}} \longrightarrow RCH_{2} + X$$

7. Haloalkanes

- In the mass spectra of chloroalkanes,
 - two peaks, separated by two mass units, in the ratio 3:1 will be appeared

7. Haloalkanes

- In the mass spectra of bromoalkanes,
 - two peaks, separated by two mass units, having approximately equal intensities will be appeared