ОСНОВЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ. ТЕРМОДИНАМИКА ХИМИЧЕСКОГО РАВНОВЕСИЯ. ПРОЦЕССЫ ОБРАТИМЫЕ И НЕОБРАТИМЫЕ

Захарова Екатерина Константиновна,

кандидат химических наук

Часть І

ОСНОВЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ

- Термодинамика –
- Химическая термодинамика –

Система (С.) –

Окружающая среда –

С. изолированная –

С. открытая –

С. закрытая -

С. гомогенная -

С. гетерогенная –

Фаза –

Компоненты –

С. простая –

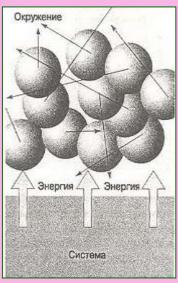
С. сложная –

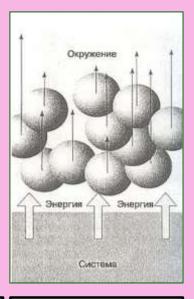
- Термодинамические параметры –
- Термодинамический процесс –

NB! Система обязательно должна содержать большое число молекул. Системы с малым числом молекул термодинамика не рассматривает.

Состояния термодинамических систем:

- Равновесное
- Неравновесное (неустойчивое, лабильное)
- Стационарное


- Термодинамические параметры (параметры состояния) или свойства:
 - □Внешние параметры;
 - □Внутренние параметры;
 - □Экстенсивные параметры;
 - □Интенсивные параметры


Термодинамический процесс -

- Самопроизвольные процессы
- Несамопроизвольные процессы
- Обратимые процессы
- Необратимые (неравновесные) процессы

Термодинамические функции:

- Функции состояния (термодинамические потенциалы)
 - □ U внутренняя энергия, Дж
 - □ Н энтальпия, Дж
 - F свободная энергия Гельмгольца, Дж
 - □ G энергия Гиббса, Дж
 - □ S энтропия, Дж/К
- Функции процесса величины, значение которых зависит от пути, по которому происходит изменение системы.
 - □ Q теплота, Дж
 - 🗖 А работа, Дж

Теплота **Q**

Работа А

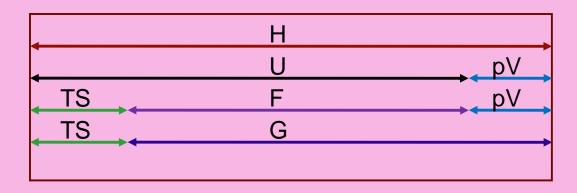
• Внутренняя энергия

$$U=U(S,V)$$

• Энтальпия

$$H=H(S,p)$$

• Свободная энергия Гельмгольца


$$F=F(T,V)$$

• Энергия Гиббса

$$G=G(T,p)$$

• Энтропия

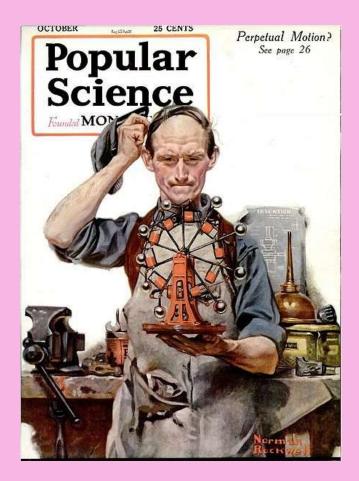
S

Первый закон термодинамики

(закон сохранения энергии)

Р.Майер (1842 г.), Д. Джоуль (1843 г.)

Изменение внутренней энергии системы ΔU равно сумме количества теплоты Q, переданного системе, и работы A внешних сил:


$$\Delta U = Q + A$$
.

• Уравнение представляет собой математическое выражение первого начала термодинамики.

$$A=-A'$$
,
 $Q = \Delta U + A'$.

Для физико-химических процессов: dA = PdV или $A = P\Delta V$ – работа расширения

Вечный двигатель

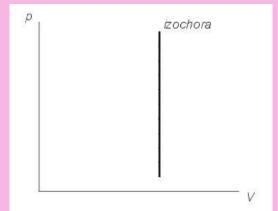
Perpetuum mobile?

Первый закон термодинамики

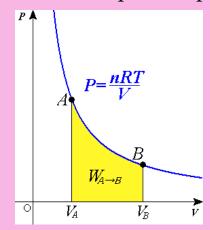
Количественное выражение первого закона термодинамики для бесконечно малых, элементарных, процессов имеет следующий вид:

$$\delta Q = \frac{dU}{dU} + \delta A$$
$$\frac{dU}{dU} = \delta Q - \delta A$$

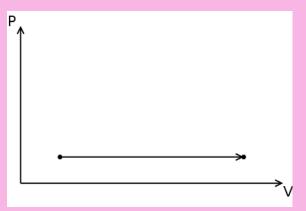
Здесь d обозначает полный дифференциал и стоит перед функцией состояния.

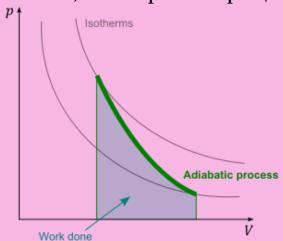

U – внутренняя энергия (функция состояния).

dU – бесконечно малое изменение внутренней энергии системы U.


 δ – бесконечно малая величина (количество) какого-либо свойства, не являющегося функцией состояния системы.

 δA – элементарная работа (бесконечно малое количество работы).


Применение первого закона термодинамики к различным процессам


V=const, изохорный процесс

T=const, изотермический процесс

P=const, изобарный процесс

Q=const, адиабатический процесс

Применение первого закона ($Q = \Delta U + A$) термодинамики к различным процессам

1. Изохорные процессы. V = const, $\Delta V = 0$

$$\mathbf{A} = \mathbf{p} \cdot \Delta \mathbf{V}$$

Т.к. $\Delta \mathbf{V} = \mathbf{0}$, то и $\mathbf{A} = 0$. Тогда $\mathbf{Q}_{\mathbf{V}} = \Delta \mathbf{U}$

2. Изобарные процессы. p = const, $\Delta p = 0$,

$$\mathbf{Q}_{\mathbf{P}} = \Delta \mathbf{U} + \mathbf{p} \cdot \Delta \mathbf{V}$$

Q_P - изобарный тепловой эффект реакции

$$\mathbf{Q}_{P} = \mathbf{U}_{2} - \mathbf{U}_{1} + \mathbf{p}(\mathbf{V}_{2} - \mathbf{V}_{1});$$
 $\mathbf{Q}_{P} = \mathbf{U}_{2} - \mathbf{U}_{1} + \mathbf{p}\mathbf{V}_{2} - \mathbf{p}\mathbf{V}_{1}$
 $\mathbf{Q}_{P} = (\mathbf{U}_{2} + \mathbf{p}\cdot\mathbf{V}_{2}) - (\mathbf{U}_{1} + \mathbf{p}\cdot\mathbf{V}_{1})$
 \mathbf{H} - ЭНТАЛЬПИЯ

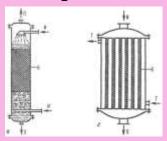
$$\mathbf{H} = \mathbf{U} + \mathbf{p} \cdot \mathbf{V}; \quad \mathbf{Q}_{\mathbf{P}} = \mathbf{H}_2 - \mathbf{H}_1 = \Delta \mathbf{H}$$

$$\mathbf{Q}_{\mathbf{P}} = \Delta \mathbf{H}$$

3. Изотермические процессы. T = const, $\Delta T = o$ $Q = \Delta U + A$

$$\Delta T = 0$$
, $\Delta U = 0$

$$\mathbf{Q}_{\mathrm{T}} = \mathbf{A}$$


4. Адиабатические процессы.

$$\Delta Q = o$$
. $o = \Delta U + A$

$$A = -\Delta U$$

Процессы в технологической практике:

• изобарно-изотермические (p=const, T=const). Примеры: процессы, протекающие в открытых и проточных аппаратах.

• изохорно-изотермические (V=const, T=const). Примеры: процессы, протекающие в автоклавах и других аппаратах с постоянным объёмом.

Термохимия -

Тепловой эффект - количество теплоты, выделившееся или поглощенное химической системой при протекании в ней химической реакции. Тепловой эффект обозначается символами Q или ΔH (Q = $-\Delta H$).

Для экзотермической реакции (теплота выделяется): $Q_p>0$, $\Delta H<0$. Для эндотермической реакции (теплота поглощается): $Q_p<0$, $\Delta H>0$.

Стандартная энтальпия образования простых веществ (ΔH°_{298}) при стандартных условиях принимается равной о.

Стандартная энтальпия образования сложного вещества (ΔH°_{298}) – теплота, которая поглощается или выделяется при образовании 1 моля химического соединения из простых веществ при заданных условиях, ΔH°_{298} , (кДж/моль).

Стандартные условия: давление — 760 мм рт. ст.= $101325\ \Pi a$ =1 атм. Температура — 298 $K \approx 25$ °C

$$T = 273 + t$$

Термохимические уравнения

1) Термохимическая форма записи:

$$H_{_2}(\Gamma) + \frac{1}{2}O_{_2}(\Gamma) \to H_{_2}O(\mathfrak{R}) + Q;$$
 $H_{_2}(\Gamma) + \frac{1}{2}O_{_2}(\Gamma) \to H_{_2}O(\mathfrak{R}) + 286\ кДж/моль$
 Q – термохимический тепловой эффект реакции

2) Термодинамическая:

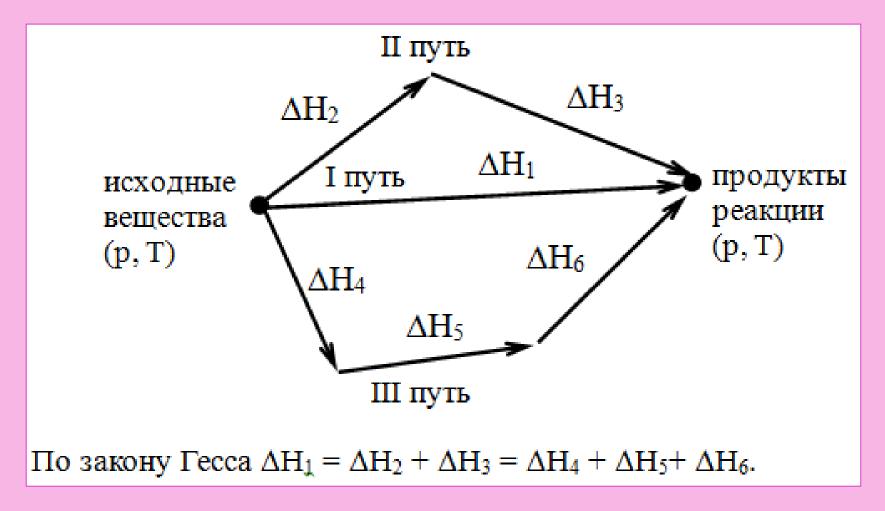
$$H_2(\Gamma) + \frac{1}{2}O_2(\Gamma) \rightarrow H_2O(\pi); \Delta H = -286 кДж,$$

ДН – термодинамический тепловой эффект

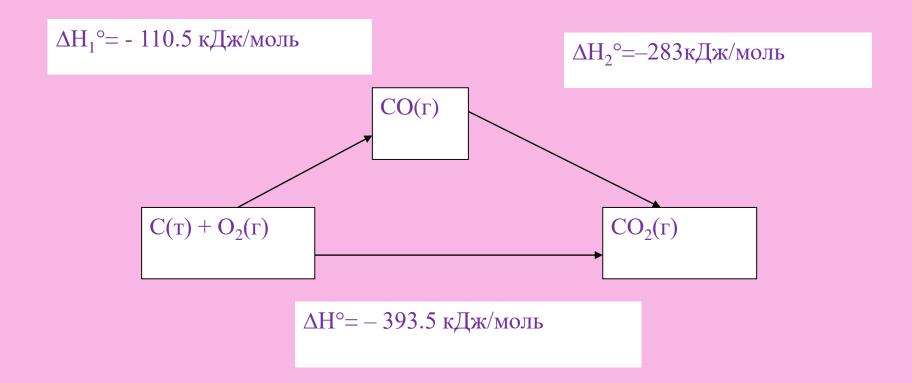
Закон Гесса

Этот закон был открыт Г.И. Гессом в 1840 г.

Формулировка закона Гесса:


Тепловой эффект реакции, протекающей при постоянном давлении ($Qp = \Delta H$) или при постоянном объеме ($Q_V = \Delta U$) и постоянной температуре, определяется только природой и состоянием исходных веществ и продуктов реакции и не зависит от пути перехода от исходных веществ к продуктам реакции (т.е. реакцию можно проводить в одну, две, три и т.д. стадии).

Закон Гесса основан на том, что Q_p и Q_V – функции состояния (в отличие от Q).


$$Q_V = \Delta U$$
, $V = const$,

$$Q_p = \Delta H$$
, $p = const$

Термохимический цикл

Получение СО из углерода и кислорода
СО +
$${}^{1}\!\!/_{2}$$
 О $_{2}$ \rightarrow СО $_{2}$ + 283,0 кДж/моль
С + О $_{2}$ \rightarrow СО $_{2}$ + 393,5 кДж/моль
С + ${}^{1}\!\!/_{2}$ О $_{2}$ \rightarrow СО + 110,5 кДж/моль

Калорийность основных составных частей пищи

Составные части пищи и	Калорийность	
напитков	кДж/г	ккал/г
Углеводы	16	3,8
Белки	17	3,8 4,1 9,1
Жиры	38	9,1

Продукты	Калорийность	
	кДж/г	ккал/г
Сливочное масло	30,41	7,40
Орехи	23,64	5,70
Сыр	16,82	4,06
Caxap	16,80	3,94
Рис	15,36	3,61
Мясо	11,07	2,66
Белый хлеб	9,91	2,33
Мороженое	6,98	1,66
Картофель	3,69	0,86
Апельсины	1,50	0,35

Расход энергии при различных режимах двигательной активности

Режим	Расход энергии	
	кДж/мин	ккал/мин
Сидение	6	1,5
Стояние	10	2,5
Ходьба	16	3,8
Бег	40	9,6

Общий расход энергии в сутки:

Мужчины ≈ 9200 - 12100 кДж; Женщины ≈ 6700 - 8800 кДж

I следствие из закона Гесса

• Энтальпия реакции образования равна разности алгебраической суммы энтальпий образования всех продуктов реакции и алгебраической суммы энтальпий образования всех исходных веществ:

$$\Delta H_r^0 = \sum v_j \cdot \Delta H_{f,npoo}^0 - \sum v_i \cdot \Delta H_{f,ucx}^0,$$

• где $\Delta H^{\circ}_{прод}$, $\Delta H^{\circ}_{исx}$ – значения стандартной энтальпии образования продуктов реакции и исходных веществ, ν_{j} , ν_{i} – соответствующие продуктам и реагентам стехиометрические коэффициенты в уравнении химической реакции.

 $\Delta H^{\circ}_{oбp}(Fe_3O_{4, \kappa}) = -1117 \ кДж/моль,$

 $\Delta H^{\circ}_{oбp}(CO_r) = -110,5 \text{ кДж/моль,}$

 $\Delta H^{\circ}_{\circ \delta p}(CO_{2, r}) = -393,5 \text{ кДж/моль}$

 $\Delta H^{\circ}_{obp}(Fe_{\kappa}) = 0.$

 $\Delta H^{\circ}_{p-H} = 4 (-393,5) + 3 \cdot 0 - [-1117 + 4(-110,5)] = -15,0 кДж.$

II следствие из закона Гесса

Энтальпия реакции *сгорания* равна разности алгебраической суммы теплот сгорания *исходных* веществ и алгебраической суммы теплот сгорания *продуктов* реакции:

$$\Delta H_r^0 = \sum v_i \cdot \Delta H_{cz,ucx}^0 - \sum v_j \cdot \Delta H_{cz,npoo}^0,$$

где ΔH°_{ucx} , ΔH°_{npog} – теплоты сгорания исходных веществ и продуктов реакции, ν_i, ν_j – соответствующие реагентам и продуктам стехиометрические коэффициенты в уравнении химической реакции.

Часть II

ПРОЦЕССЫ ОБРАТИМЫЕ И НЕОБРАТИМЫЕ

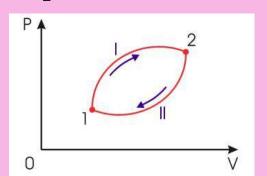
Необратимые процессы

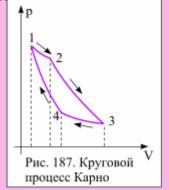
Первый закон термодинамики не устанавливает направления тепловых процессов.

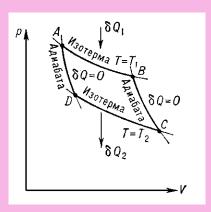
Тепловые процессы, которые могут протекать только в одном направлении, называются *необратимыми*.

Все реальные процессы необратимы

Обратимые процессы


Обратимое и равновесное состояния


Круговой процесс, состоящий из двух изотерм и двух адиабат (цикл Карно) является единственным обратимым круговым процессом, при котором рабочее тело приводится в тепловой контакт только с двумя тепловыми резервуарами. Все остальные круговые процессы, проводимые с двумя тепловыми резервуарами, необратимы.


• Круговые процессы или термодинамические циклы – это процессы, в результате которых состояние системы, претерпев ряд изменений, возвращается к исходному.

• Параметры системы в начале и в конце кругового

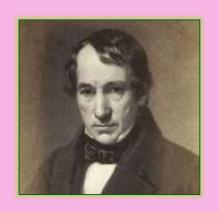
процесса одинаковы,

• Примеры: процессы, протекающие в тепловых и холодильных машинах, двигателях внутреннего сгорания

$$\Delta S \ge \frac{Q}{T}$$

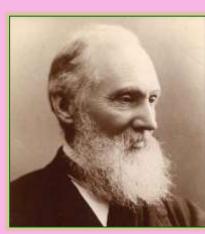
$\Delta S \ge \frac{Q}{T}$ Математическое выражение Второго закона термодинамики

Знак = для обратимых Т/Д процессов;


знак > для необратимых Т/Д процессов.

[S]-[Дж/(моль·K)]

Второй закон термодинамики


Рудольф Клаузиус, немецкий физик (1822-1888)

Томас Томпсон, шотландский химик (1773-1852)

Вильгельм Оствальд, немецкий физико-химик (1853-1932)

Томсон Кельвин, английский физиж (1824-1907)

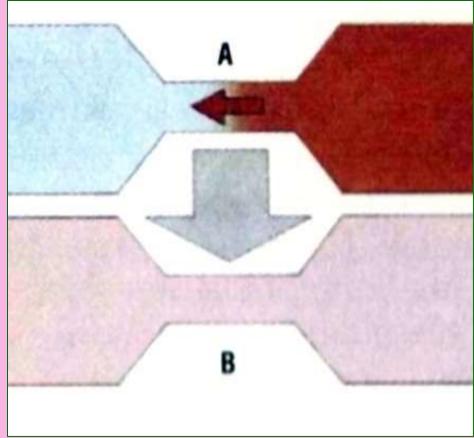
II закон (начало) термодинамики

Математическое выражение объединённого уравнения I и II законов термодинамики

$$TdS \ge dU + \delta A$$
 $T\Delta S \ge \Delta U + A$
 $T\Delta S \ge \Delta U + P\Delta V$

Энтропия как критерий самопроизвольного протекания процесса

Для изолированных систем (U = const; V = const) теплообмен и массообмен отсутствует: Q = o. Для обратимых процессов: dS = o; $\Delta S = o$. Для необратимых процессов: dS > o; $\Delta S > o$.


В <u>изолированной системе</u> всякий самопроизвольный процесс протекает в направлении возрастания энтропии:

$$dS > o; \Delta S > o; S \rightarrow S_{max};$$

при dS = o; $\Delta S = o$; $S = S_{max}$ в системе – равновесие.

Увеличение энтропии в процессах

Изменение агрегатного состояния вещества: $T \to ж \to \Gamma$ и увеличение температуры

Смешивание газов

Статистическое обоснование II закона термодинамики


Всякая изолированная система стремится перейти из состояния менее вероятного в состояние более вероятное: $W \rightarrow W_{max}$.

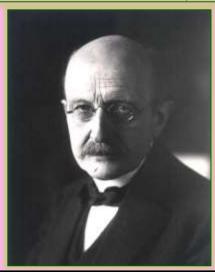
W – термодинамическая вероятность (число микросостояний, характеризующих данное макросостояние).

Л. Больцман показал, что при

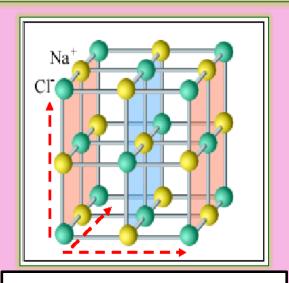
 $W \to W_{max}$; $S \to S_{max}$.

k – постоянная Больцмана (1,38· 10⁻²³ Дж/К)

Людвиг Больцман, австрийский физик (1844-1906)


Третий закон термодинамики

Известен также как <u>постулат Планка</u>


- энтропия идеального кристалла при абсолютном нуле равна нулю

$$T = o; S_o = o; \lim_{T\to 0} S \to 0$$

Позволяет рассчитать абсолютную стандартную энтропию вещества в любом агрегатном состоянии (при 298 К – справочная величина).

Макс Планк, немецкий физик (1858-1947)

Идеальный кристалл

Расчёт изменения энтропии химической реакции

S₂₉₈°, Дж/(моль•К) – абсолютная стандартная энтропия 1 моль вещества (справочная величина).

<u>Пример.</u> Определить изменение энтропии при температурах 298 К в химической реакции $C_2H_5OH_{(\Gamma)}+3O_{2(\Gamma)}=2CO_{2(\Gamma)}+3H_2O_{(\Gamma)}$.

Решение. Выпишем из справочной таблицы S^{o}_{298} и $C^{0}_{P,298}$ всех веществ-участников химической реакции

Термодинами- ческие свойства	C ₂ H ₅ OH _(r)	$\mathbf{O}_{2(\Gamma)}$	$\mathrm{CO}_{2(\Gamma)}$	$\mathbf{H_2O}_{(\Gamma)}$
S ⁰ ₂₉₈ , Дж/(моль·К)	281,38	205,01	213,66	188,72

Рассчитаем изменение энтропии при 298 К

$$\Delta_r S_{298} = \sum \nu_i \, S^0(\pi po \text{д}) \, - \sum \nu_i \, S^0(\text{исx}) = (2S^0(CO_2) + 3S^0(H_2O)) - (S^0(C_2H_5OH) + 3S^0(O_2)) = \\ (2 \cdot 213,66 + 3 \cdot 188,72) - (1 \cdot 281,38 + 3 \cdot 205,01) = \underline{96,95 \, \text{Дж/K.}}$$

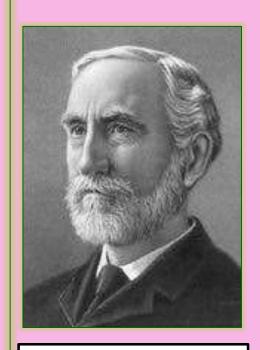
Энергия Гиббса

Энергия Гиббса (изобарно-изотермический потенциал или свободная энергия) – G

$$G = H - TS$$

$$dG = dH - TdS$$

$$\Delta G = \Delta H - T\Delta S$$


Из объединённого уравнения I и II законов термодинамики

$$T\Delta S \ge \Delta U + A$$
 или $A \le T\Delta S - \Delta U$

следует, при T = const; P = const:

$$-\Delta G = A'_M$$

A'_M - максимальная полезная работа в изобарноизотермическом процессе.

Джозайя Уиллард Гиббс, американский физик (1839-1903)

Энергия Гельмгольца

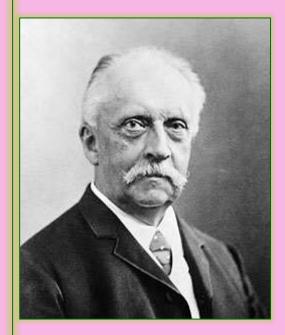
Энергия Гельмгольца (изохорно-изотермический потенциал) – F

$$F = U - TS$$

$$dF = dU - TdS$$

$$\Delta F = \Delta U - T\Delta S$$

Из объединённого уравнения I и II законов термодинамики следует, при T = const; V = const:


$$-\Delta \mathbf{F} = \mathbf{A}_{\mathbf{M}}$$

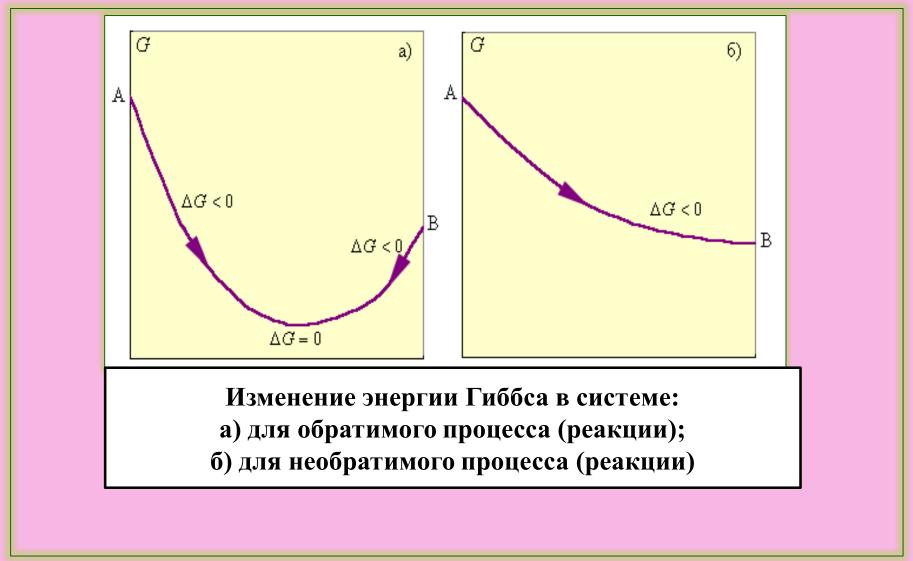
А_М – максимальная полезная работа в изохорноизотермическом процессе.

Связь энергии Гиббса и энергии Гельмгольца

$$\Delta G = \Delta F + P \Delta V$$
 или $\Delta G = \Delta F + \Delta n R T$

∆n – изменение числа моль газообразных веществ в результате протекания реакции (процесса).

Герман Гельмгольц, немецкий физик, физиолог, психолог (1821-1894)


Физический смысл энергии Гиббса и энергии Гельмгольца

Энергия Гиббса и энергия Гельмгольца характеризуют работоспособность системы при T = const; P = const и T = const; V = const, соответственно, т. е. определяют ту часть общей энергии системы, которая может превратиться в полезную работу.

Абсолютные значения G и F определить невозможно, определяют ΔG и ΔF для процесса при переходе системы из состояния 1 в состояние 2:

$$\Delta G = G_2 - G_1; \qquad \Delta F = F_2 - F_1.$$

Энергия Гиббса как критерий самопроизвольного протекания процесса

Знаки ΔH , ΔS , ΔG и направление самопроизвольного протекания реакции $\Delta G = \Delta H - T \Delta S$

Знаки ДН и ДS	Знак ДС	Направление протекания реакции	Пример
$\Delta H < 0$ $\Delta S > 0$	ΔG < 0 При любых Т	Прямая реакция при любой температуре	$2K(\kappa) + 2H_2O(ж) = 2KOH(\kappa) + H_2(\Gamma)$
$\Delta H > 0$ $\Delta S < 0$	ΔG > 0 При любых Т	Обратная реакция при любой температуре	$3O_2(\Gamma) = 2O_3(\Gamma)$
$\Delta H < 0$ $\Delta S < 0$	$ \Delta G < 0 T \rightarrow 0 \Delta G > 0 T \rightarrow \infty $	Прямая реакция при низких температурах. Обратная реакция при высоких температурах	$2H_{2}(\Gamma) + O_{2}(\Gamma) \rightleftarrows 2H_{2}O(\Gamma)$
$\Delta H > 0$ $\Delta S > 0$	$ \Delta G > 0 T \rightarrow 0 \Delta G < 0 T \rightarrow \infty $	Обратная реакция при низких температурах. Прямая реакция при высоких температурах	$N_2O_4(\Gamma) \rightleftarrows 2NO_2(\Gamma)$

Второе начало термодинамики

Задача. Для стандартных условий вычислите изобарноизотермический потенциал (изменение энергии Гиббса) реакции:

• $Al_2O_3(T) + 3H_2O(x) = 2Al(OH)_3(T)$

Справочные данные:

•	$\Delta { m H}^0$ обр, кДж/моль	ΔS^0 , Дж/(моль \cdot К)
$Al_2O_3(T)$	- 1676, 8	50,95
$Al(OH)_3(T)$	- 1277,0	82,9
$H_2O(x)$	- 286,02	70,0

Решение: по 1-му следствию закона Гесса рассчитываем ΔH^0 r:

- $\Delta H^{\circ}r = 2 \Delta H^{\circ}oбp(Al(OH)_{3}(T)) (\Delta H^{\circ}oбp(Al_{2}O_{3}(T)) + +3\Delta H^{\circ}oбp(H_{2}O(ж))) = -1735,28 кДж/моль = -1735280 Дж/моль.$
- $\Delta S^0 r = = \sum S^o npog. \sum S^o pear. = -95,15 Дж/(моль·К).$
- $\Delta G^0 = \Delta H^0 T \cdot \Delta S^0 = -1735280 298 (-95,15) = -1706930 Дж/моль <math display="block">\Delta G^0 = -1706930 \ Дж/моль$
- <u>А G<0. Процесс протекает самопроизвольно в прямом направлении</u>

Часть III

ТЕРМОДИНАМИКА ХИМИЧЕСКОГО РАВНОВЕСИЯ

Закон действующих масс (гомогенные системы)

$$aA + bB = dD + eE$$

•
$$c(A) = [A] = const$$

•
$$c(B) = [B] = const$$

•
$$c(D) = [D] = const$$

•
$$c(E) = [E] = const$$

$$K_c = \frac{[D]^d [E]^e}{[A]^a [B]^b}$$

Вещества в твердой фазе в уравнение не входят.

• Химическая реакция общего вида

$$aA + bB \leftrightarrow eE + dD$$

Уравнение изотермы:

$$\Delta G_{p-\mu\nu\nu} = \Delta G^{\circ} + RT \ln Kc$$

где:

- ΔG_{р-ции} изменение энергии Гиббса реакции;
- ΔG° изменение энергии Гиббса в стандартных условиях.

В состоянии равновесия $\Delta G_{p-ции} = 0$, следовательно:

Если К = 0, реакция не протекает;

К»1, реакция протекает в прямом направлении;

К«1, реакция протекает в обратном направлении.

Благодарю за внимание!