

ЭЛЕКТРОННЫЕ ЭФФЕКТЫ

Распределение заряда в молекуле

ПОЛЯРНЫЕ ЭЛЕКТРОННЫЕ ЭФФЕКТЫ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ

Одно из положений теории химического строения указывает на то, что атомы или группы атомов взаимно влияют друг на друга, от чего зависит реакционная способность в целом. Это влияние осуществляется при помощи электронных эффектов. Различают 2 вида полярных эффектов:

- индуктивный (І-эффект)
 - -мезомерный (М-эффект)

1. Индуктивный эффект

Индуктивный эффект заместителя – перераспределение электронной плотности по О-связи вследствие различных электроотрицательностей атомов, образующих эту связь.

Элемент X характеризуется –I и является электроно-акцептором, А вызывает +I и является электроно-донором.

Примеры индуктивного эффекта:
$$C^{\delta +} \longrightarrow X^{\delta -} \qquad -\text{ I- эффект} \qquad C^{\delta +} \longrightarrow \text{ CI}^{\delta -}$$

$$C^{\delta -} \longleftarrow X^{\delta +} \qquad +\text{ I- эффект} \qquad C^{\delta -} \longleftarrow \text{ Na}^{\delta +}$$

ПОЛЯРНЫЕ ЭЛЕКТРОННЫЕ ЭФФЕКТЫ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ

В целом можно предложить 2 ряда заместителей в зависимости от природы их индукционного эффекта:

- І-эффект:

$$--N^+(CH_3)_3 > NO_2 > -C \equiv N > CO > COOR >$$

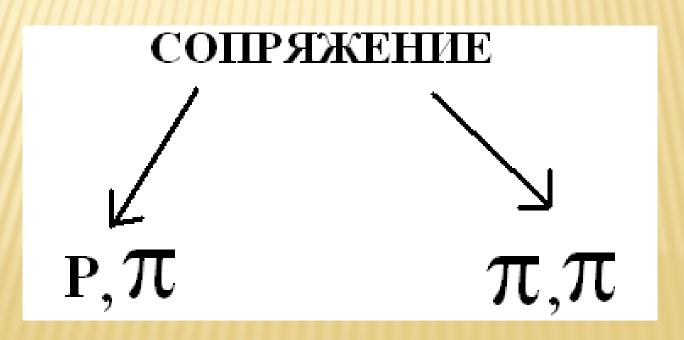
> F > CI > Br > I > OH > NH₂

+ І-эффект:

$$-CH_3 < -CH_2CH_3 < -CH(CH_3)_2 < -C(CH_3)_3$$

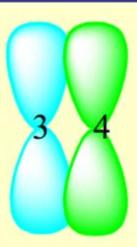
Особенности проявлений индукционных эффектов

1. Сила индукционного эффекта быстро убывает с расстоянием:

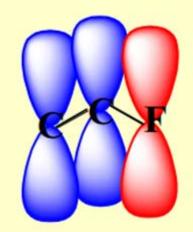

$$\delta \delta^{+} \delta^{+} \delta^{-}$$
 $H_{3}C \longrightarrow CH_{2} \longrightarrow CI$

$$\delta\delta^{-}$$
 δ^{-} δ^{+} Li

2. Все ненасыщенные углеводородные группировки проявляют -l-эффект


2. Мезомерный эффект, теория резонанса

Мезомерный эффект заместителя – перераспределение электронной плотности по π - сопряженной системе.



Мезомерные или резонансные эффекты заместителей проявляются только в тех молекулах, где есть возможность сопряжения заместителя R с оставшейся частью молекулы R-X.

 CH_2 =CH-Fвинилфторид p- π -сопряжение

Мезомерный эффект обозначается «М» может быть положительным (+М) и отрицательным (-М)

На схемах мезомерный эффект изображается двумя способами: изогнутыми стрелками и резонансными структурами

$$\begin{array}{c|c}
\delta^{+} \\
H_{2}C \longrightarrow C \longrightarrow \delta^{-} \\
H \longrightarrow H
\end{array}$$
-M

$$\delta$$
 H_2N
 δ
 δ
 δ
 δ
 δ

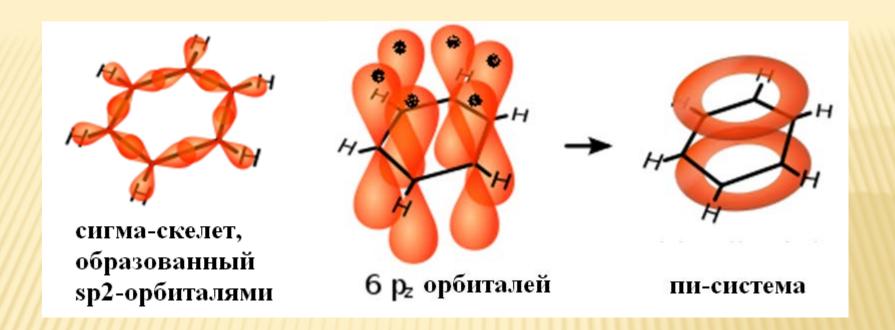
$$H_2C = C \longrightarrow CH_3 \longrightarrow H_2C \longrightarrow CH_3$$

Мезомерный эффект считается положительным (+M), если заместитель, в результате сопряжения, повышает электронную плотность на реакционном центре.

Эффект считается отрицательным (-М), если заместитель понижает электронную плотность на реакционном центре.

(-M)	(+M)
-NO ₂ , -C(R)=O, -COOH, -C≡N, -SO ₃ H, -C ⁺ R ₂ (карбокатионы)	F,CI,Br,I (-I-эффекты) -OH, -OR, -NH ₂ , NR ₂ , -SH, -SR (-I- эффекты)

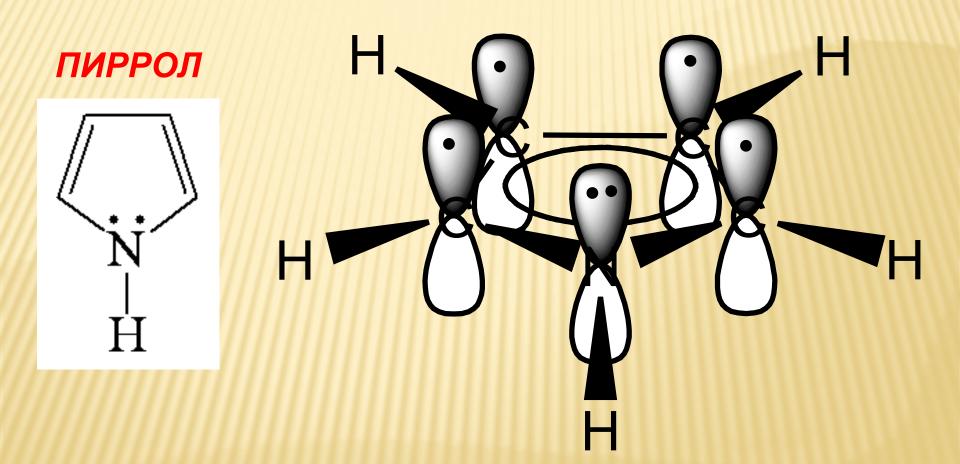
 Важно отметить, что мезомерный и индукционный эффекты заместителя в одной молекуле действуют независимо друг от друга!


АРОМАТИЧНОСТЬ

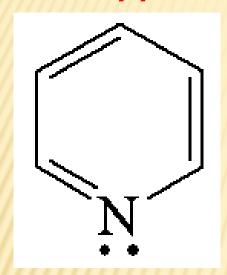
- 1. Циклическое строение
- 2. Плоский сигма-скелет
- 3. Наличие единой т-сопряженной системы
- 4. Правило Хюккеля: количество электронов в сопряженной системе (4n+2), где n − 0,1,2...∞

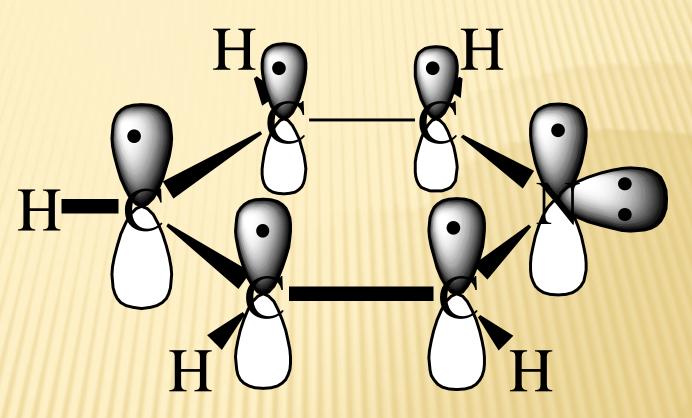
$$C_6H_6$$

Benzene Molecular formula


Planar Hexagon Bond Length 140 pm

Правило Хюккеля (4n + 2) = (4*1 + 2) = 6




АРОМАТИЧНОСТЬ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ

П-избыточная система

ПИРИДИН

П-недостаточная система

КЛАССИФИКАЦИЯ РЕАКЦИЙ И РЕАГЕНТОВ В ОРГАНИЧЕСКОЙ ХИМИИ

Химические реакции могут классифицироваться по разным принципам. Для многих органических реакций наиболее важная классификация по следующим признакам:

- І. По изменению числа частиц в ходе реакций (т.е. по результатам проведения). В соответствии с этим признаком различают:
 - 1. Реакции присоединения:

Общая схема:
$$> C = C < + XY \rightarrow - C - C - X Y$$
 Пример: $> CH_2 = CH_2 \xrightarrow{Br_2} Br - CH_2 - CH_2 - Br$

2. Реакции замещения:

Общая схема:
$$R - X + Y \rightarrow R - Y + X$$

Пример:
$$CH_4 + Br_2 \longrightarrow CH_3 Br + HBr$$

3. Реакции отщепления (элиминирования):

Общая схема:
$$-\frac{1}{2} - \frac{1}{2} -$$

3. Реакции отщепления (пример):

$$CH_2 - CH_2 \longrightarrow CH_2 = CH_2 + H_2O$$

H OH

4. Реакции перегруппировки:

HOOC COOH HOOC COOH

HOOC H
$$\rightarrow$$
 H \rightarrow H

транс-изомер

цис-изомер

2. ПО ТИПУ РАЗРЫВА КОВАЛЕНТНОЙ СВЯЗИ

В этом случае ориентируются на способ разрыва ковалентной связи. Этих способов два:

2.1. Гомолитическое (радикальное) расщепление:

2. 2. Гетеролитическое (ионное) расщепление:

А+ ЭЛЕКТРОФИЛЫ, В- НУКЛЕОФИЛЫ

ЭЛЕКТРОФИЛЬНЫЕ РЕАГЕНТЫ

ЭЛЕКТРОФИЛЫ (E+)- электроно-дефицитные частицы, имеющие центры с пониженной электронной плотностью.

Классификация: сильные и слабые

Сильные электрофилы:

протон (H⁺), ионы металлов (Mn⁺), частицы, имеющие вакантные орбитали (кислоты Льюиса: AlCl₃, FeCl₃, BF₃, SbCl₅ и т.д.), молекулы кислородных кислот с высокой степенью окисления центрального атома (H₂SO₄, HNO₃).

Слабые электрофилы:

молекулы, относительно невысокое сродство которых к электрону может быть повышено в результате их комплексообразования с сильными электрофилами (AICI₃, FeCI₃, BF₃, H⁺, Mn⁺), хлорангидриды кислот (CH₃COCI), галогенпроизводные углеводородов (C₂H₅I, C₃H₇Br), алкены.

НУКЛЕОФИЛЬНЫЕ РЕАГЕНТЫ

Нуклеофилы – частицы, имеющие центры с повышенной электронной плотностью.

Сильные нуклеофилы:

анионы с высоким сродством к протону, т.е. анионы слабых кислот (CH_3O^- , OH^- , $C_6H_5O^-$, NH_2^- , H^- , HS^- , HCO_3^- , CH_3COO^-) и молекулы, содержащие атомы с неподеленной электронной парой

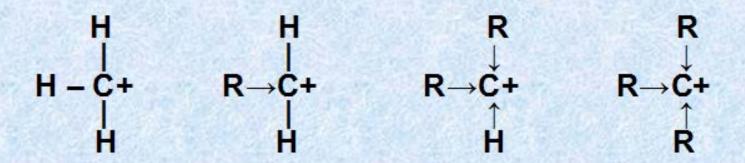
NH₃, RNH₂, R₂NH, R₃N, H₂O, ROH, ROR

Слабые нуклеофилы:

анионы более или менее сильных кислот (CI-, Br-, I-, HSO₄-, CNS-, H₂PO₄-), молекулы с гетероатомом, неподеленные электронные пары которого участвуют в сопряжении с соседними молекулами π -орбиталями (C₆H₅OH – фенол, C₆H₅NH₂ – анилин, C₆H₅NHC₆H₅ – дифениламин), а также катионы с неподеленными электронными парами(H₃O⁺, ROH₂+ и др.)

УСТОЙЧИВОСТЬ РАДИКАЛОВ И ИОНОВ

Согласно законам физики, устойчивость заряженной системы повышается при распределении заряда.


Приложение этого закона к оценке устойчивости радикалов и ионов означает:

<u>чем лучше рассредоточен (делокализован)</u> <u>неспаренный электрон или электрический заряд,</u> <u>тем устойчивее радикал или ион.</u>

В рассредоточении электрического заряда (электронов) большую роль играют полярные электронные эффекты заместителей:

индукционный и мезомерный эффекты.

УСТОЙЧИВОСТЬ КАРБКАТИОНОВ

Алкильная группа (R→), связанная с атомом углерода, несущим положительный заряд, стремится подать электроны на этот атом углерода (+I — эффект) и, таким образом, в какой-то мере погасить (уменьшить) его положительный заряд; при этом сама алкильная группа становится в какой-то степени положительно заряженной.

Это распределение заряда стабилизует карбкатион, поэтому устойчивость их повышается в направлении от метильного к третичному карбкатиону.

УСТОЙЧИВОСТЬ КАРБКАТИОНОВ

ДРУГОЙ ПРИМЕР:

$$CH_{3} - CH_{2} - CH_{2}$$
 и $CH_{2} = CH - CH_{2}$ 1 2 3 пропил-катион аллил-катион

Какой катион устойчивее? В аллил-катионе за счет мезомерного эффекта (сдвиг π-электронов) делокализация положительного заряда выше: его можно представить в виде двух мезомерных структур:

$$CH_{2} = CH - \overset{+}{C}H_{2} \leftrightarrow \overset{+}{C}H_{2} - CH = CH_{2}$$
1 2 3 1 2 3

III. КЛАССИФИКАЦИЯ РЕАКЦИЙ ПО МЕХАНИЗМУ ЭЛЕМЕНТАРНЫХ СТАДИЙ

Это наиболее сложный тип, классифицирующий реакции. Он соответствует двум предыдущим.

По результату:

По электронной природе реагента:

1. Замещение (S)

1.Электрофильные (Е+)

2. Присоединение (А)

2. Нуклеофильные (:Nu-)

3.Отщипление

3. Радикальные (R)

IV. Классификация реакций по частным признакам.

- •Гидратация (реакция присоединения воды);
- Гидрогалогенирование (реакция присоединения галогеноводорода);
 - •Дегидратация (реакция отщепления воды);
- •Дегидрогалогенирование (реакция отщепления галогеноводорода) и др.