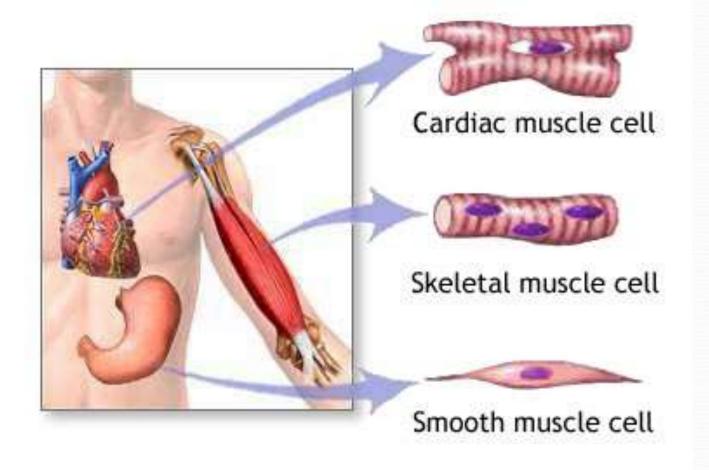

Миология

Миология – наука о мышцах. Мышц насчитывают около 600 - это приблизительно 35-40 % массы человека, не занимающегося интенсивным физическим трудом или спортом (тогда указанный показатель может достигать 50%).

Виды мышечной ткани

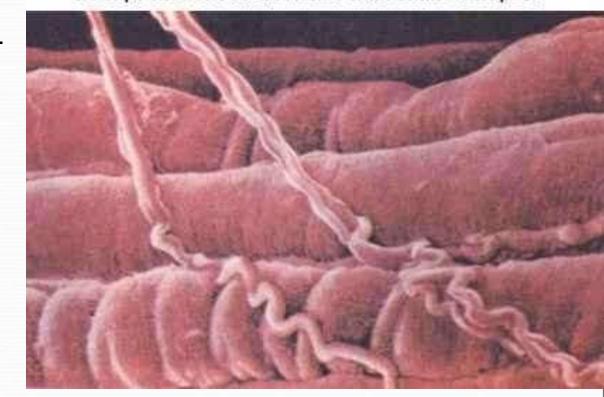

I. Исчерченная (поперечно-полосатая, скелетная)

произвольная мышечная ткань

III. Сердечная мышечная ткань (непроизвольная)

II. Гладкая (неисчерченная) непроизвольная мышечная ткань

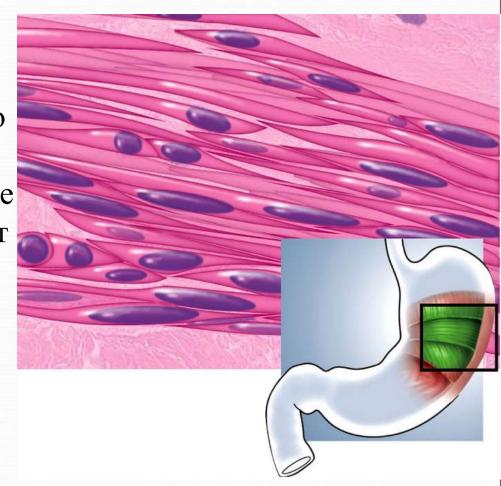
Виды мышечной ткани



Исчерченная (поперечно-полосатая, скелетная) произвольная мышечная ткань

Скелетные мышцы образованы поперечнополосатой мышечной тканью, мышечные волокна которой собраны в пучки. Внутри волокон проходят белковые нити, благодаря которым мышцы способны укорачиваться сокращаться.

поперечнополосатая мышечная ткань с нервом


Скелетные мышцы

- Прикрепляются к костям
- Отвечают за движения скелета
- Скелетные мышцы прикрепляются к костям сухожилиями
- Имеют много ядер
- Называют поперечно-исчерченной мышечной тканью

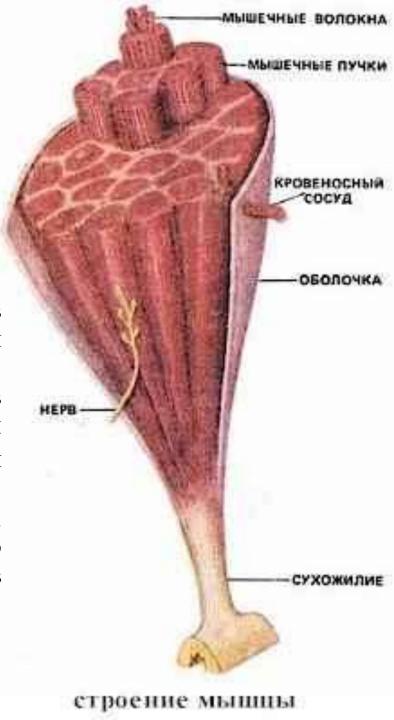
Гладкая (неисчерченная) непроизвольная мышечная ткань

Филогенетически более старая и устроена более просто.

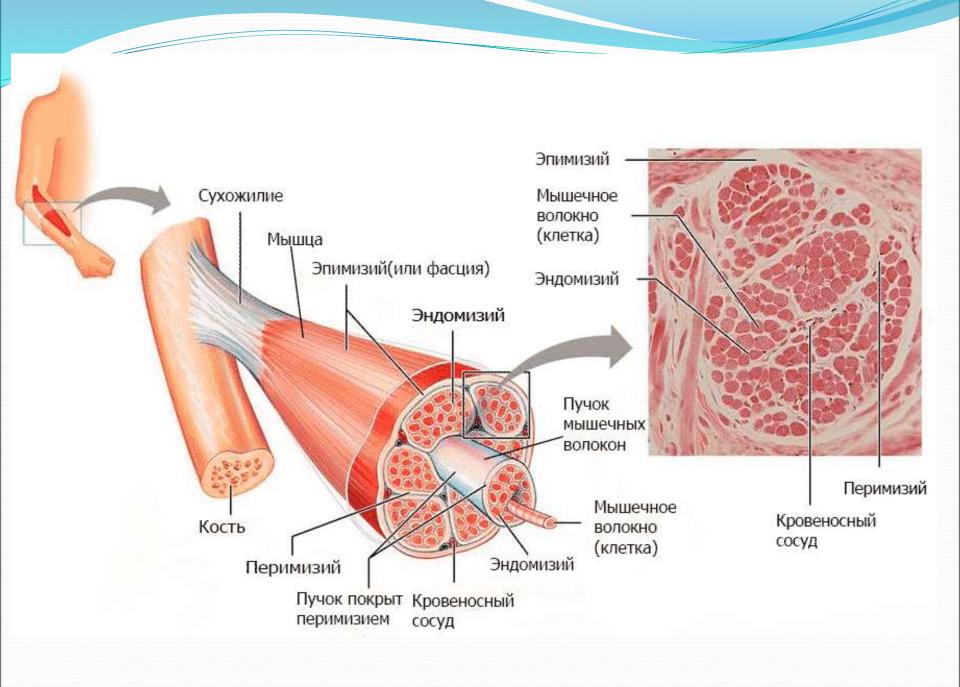
Стенки внутренних органов (сосудов, кишечника, мочевого пузыря) образованы гладкой мышечной тканью. Сокращение волокон этой ткани происходит медленно.

Поперечно-исчерченная сердечная мышечная ткань (непроизвольная)

Сердечная мышца, как и скелетная, состоит из поперечнополосатых мышечных волокон. Эти волокна в определенных участках как бы сливаются (переплетаются). Благодаря этой особенности сердечная мышца способна быстро сокращаться.

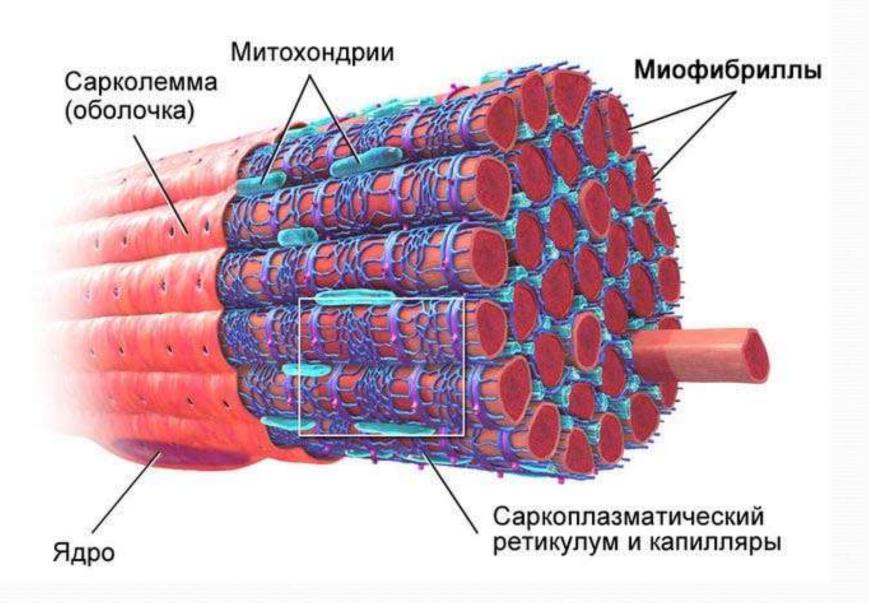

Строение скелетной мышцы

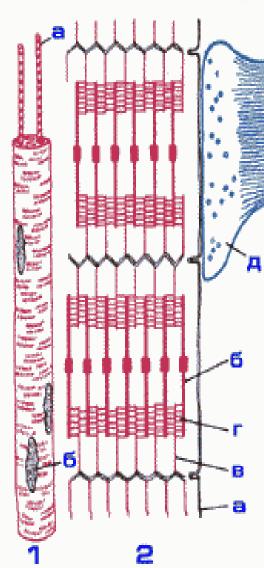
Мышца, *musculus*, состоит из пучков исчерченных (поперечно-полосатых) мышечных волокон. Эти волокна, идущие параллельно друг другу, связываются рыхлой соединительной тканью (*endomysium*) в пучки первого порядка.


Несколько таких первичных пучков соединяются, в свою очередь образуя пучки второго порядка, и т. д.

В целом мышечные пучки всех порядков объединяются соединительнотканной оболочкой - *perimysium*, составляя мышечное брюшко.

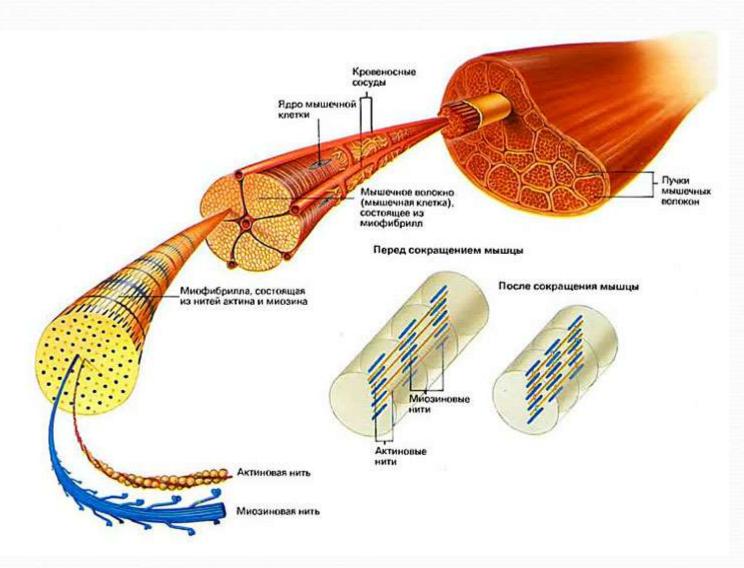
Соединительнотканные прослойки, имеющиеся между мышечными пучками, по концам мышечного брюшка, переходят в сухожильную часть мышцы.


- Мышечные волокна объединяются в пучки 1 порядка эндомизием, который регулирует степень его сокращения по принципу спирали (капронового чулка), чем больше спираль растягивается, тем сильнее она сжимает миоцит.
 - Несколько таких пучков 1 порядка объединяются внутренним перимизием в пучки 2 порядка, и так до 4 порядка. Последнего порядка соединительная ткань окружает активную часть мышцы в целом и называется эпимизием (наружным перимизием).
- Эндо- и перимизий активной части мышцы переходит на сухожильную часть мышцы и называется *перитендинием*, благодаря которому обеспечивается передача усилий каждого мышечного волокна на волокна сухожилий. На границе этих 2 тканей чаще всего бывают травмы (у танцовщиков и балерин).

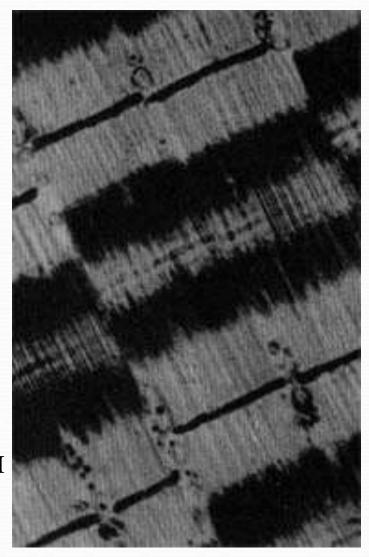

Поперечно-полосатое мышечное волокно (миоцит)

- Структурная единица длиной от 150 мкм до 12 см, содержит в цитоплазме от 1 до 2 тысяч миофибрил, расположенных без строгой ориентации, часть из них группируются в пучки.
- Миофибриллы образованы миофиламентами, содержащими актин и миозин.
- Это особенно выражено у тренированных людей. Следовательно, чем больше организованной будет волокнистая структура, тем большую силу способна развивать эта мышца.

Мышечное волокно

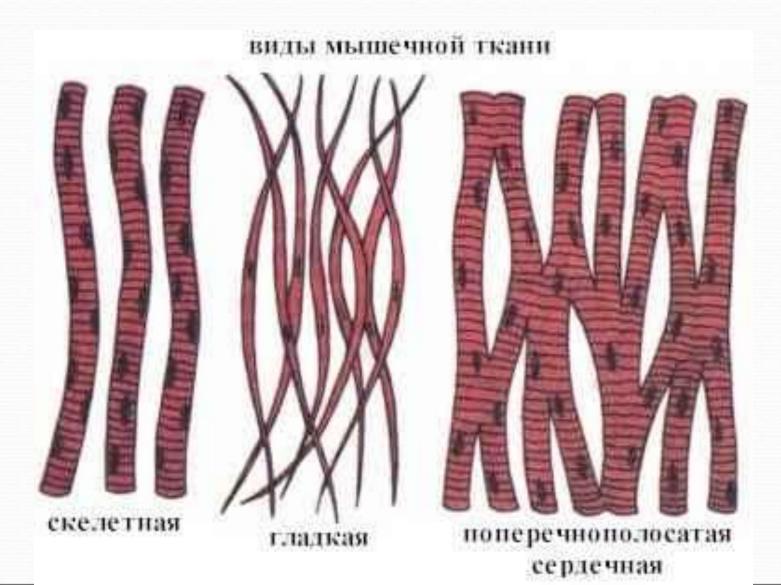

- 1 Схема строения мышечного волокна:
 - а миофибрилла
 - $\mathbf{6}$ ядро
- 2 Схема строения миофибриллы:
 - а оболочка
 - **б** миозин
 - в актин
 - г мостик между ними
 - д нервное волокно

Каждая мышца состоит из параллельных пучков поперечно-полосатых мышечных волокон. Каждый пучок одет оболочкой.

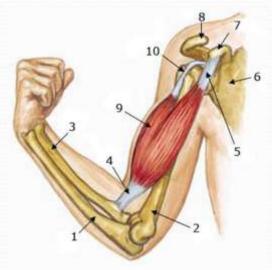

Снаружи мышца покрыта тонкой соединительнотканной оболочкой, защищающей нежную мышечную ткань.

Каждое мышечное волокно также имеет снаружи тонкую оболочку, а внутри него находятся многочисленные тонкие сократительные нити - миофибриллы и большое количество ядер.

Миофибриллы, с свою очередь, состоят из тончайших нитей двух типов - толстых (белковые молекулы миозина) и тонких (белок актина). Так как они образованы различными видами белка, под микроскопом видны чередующиеся темные и светлые полосы.

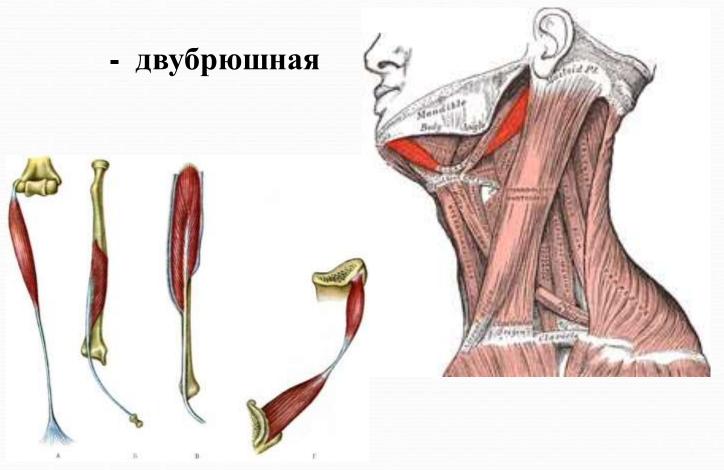

Отсюда и название скелетной мышечной ткани - поперечно-полосатая.

Классификация мышц по:


I. По строению:

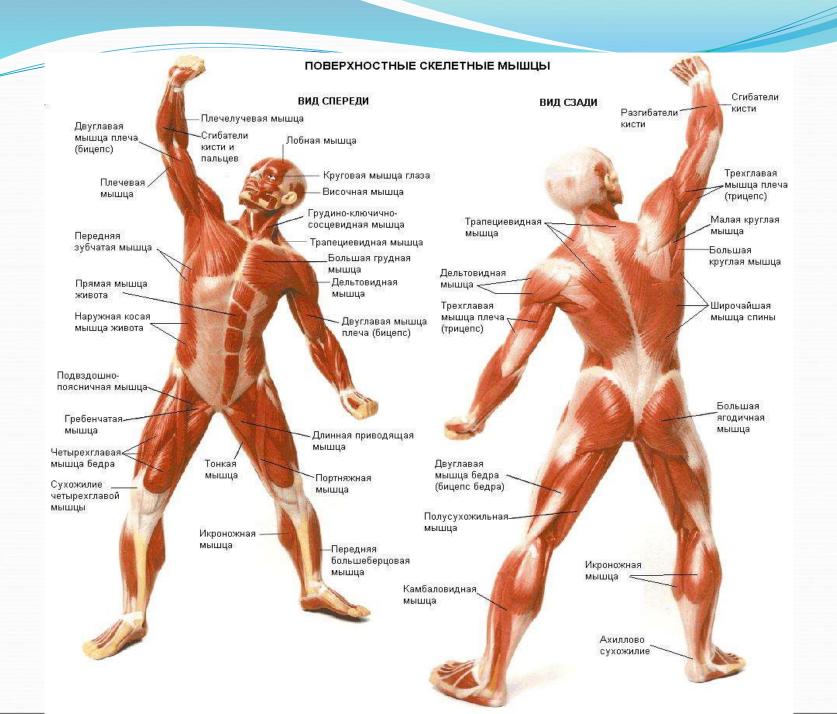
II. По числу головок:

- двуглавая;
- трёхглавая;
- четырёхглавая

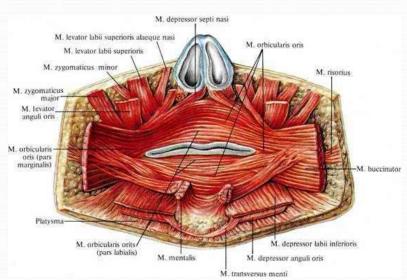


II. По направлению мышечных пучков:

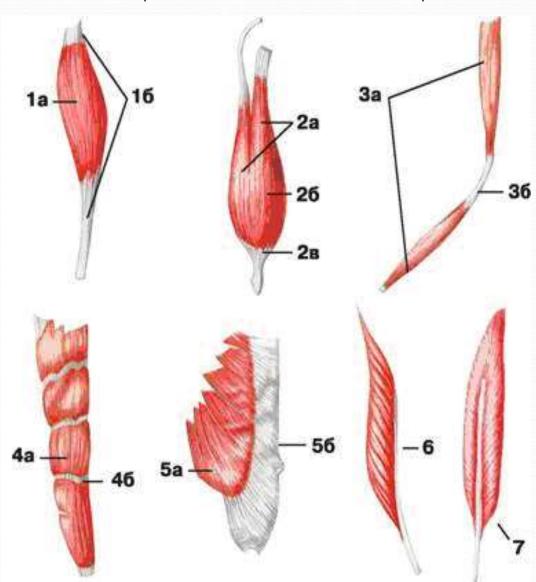
- -одноперистая;
- двуперистая;
- многоперистая

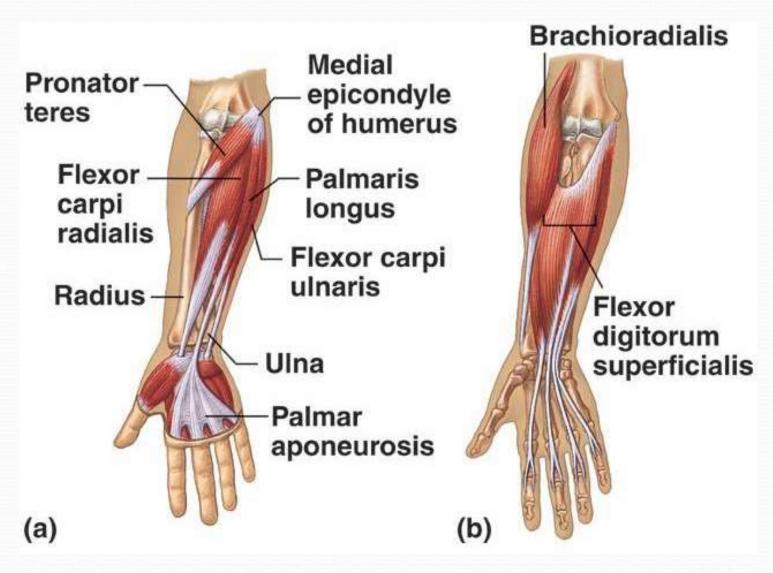

II. По числу брюшек:

II. По расположению:


- поверхностные;
- глубокие;
- медиальные;
- латеральные

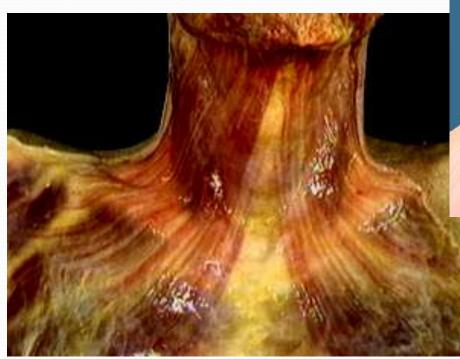
II. По функции:

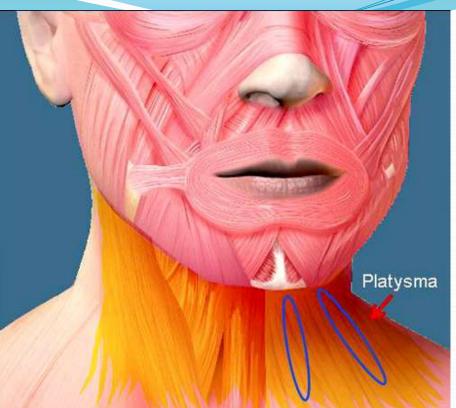

- сгибатель;
- разгибатель;
- вращатель-подниматель;
- сжиматель (сфинктер);
- отводящая (абдуктор);
- приводящая (аддуктор)



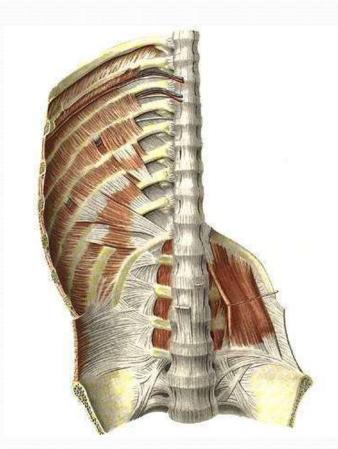
II. По форме:

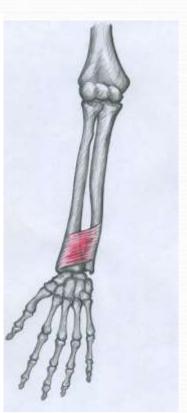
- Веретенообразная;
- квадратная;
- треугольная;
- лентовидная;
- Круговая;
- Короткие;
- длинные




длинные мышцы

ШИРОКИЕ МЫШЦЫ (platysma и т.д.)

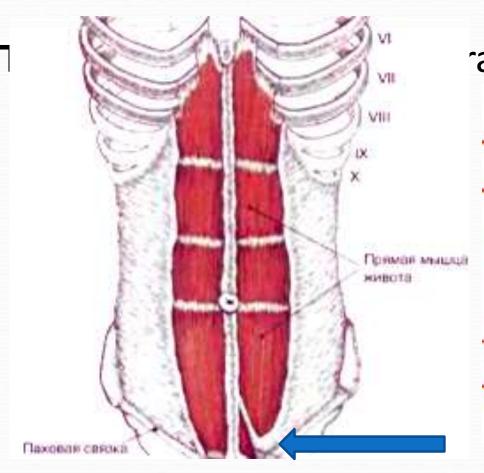


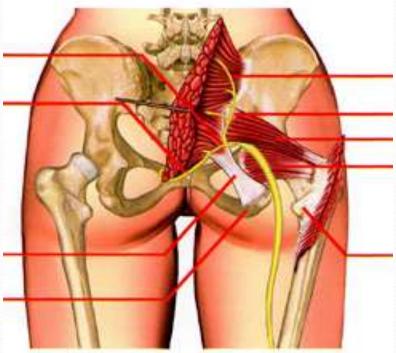


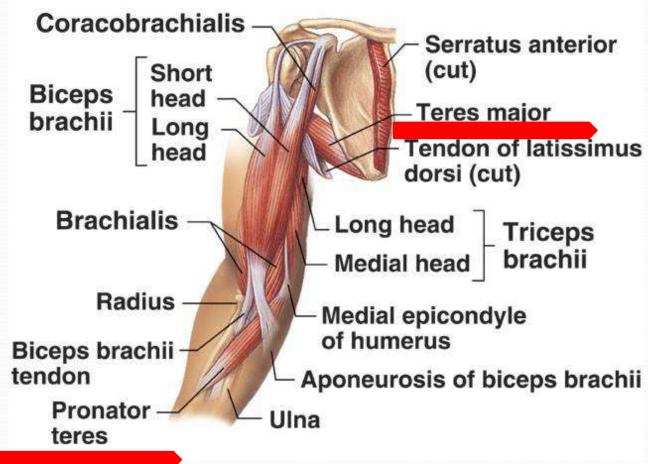
Мышца соединяется с кожей

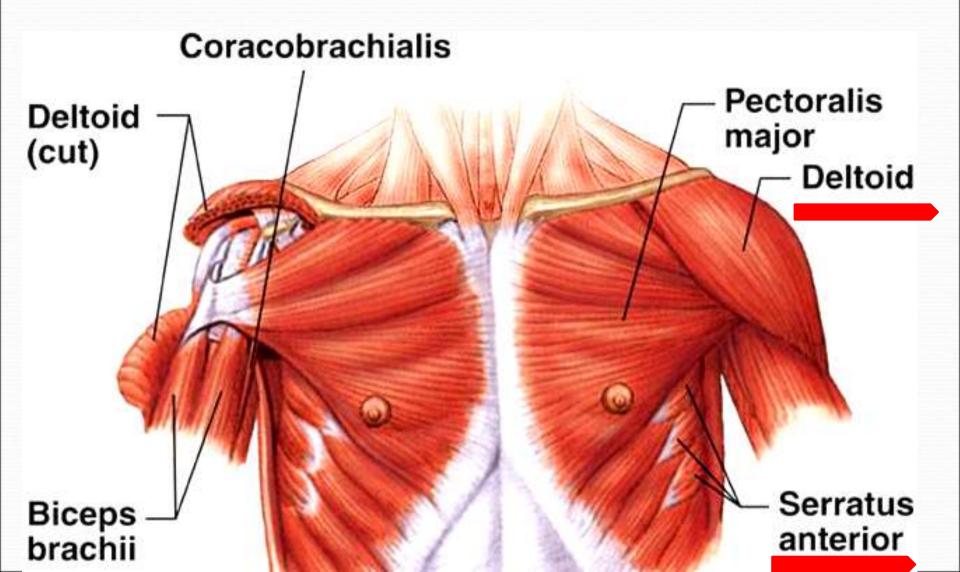
*широкие мышцы находятся в основном на туловище и имеют широкое сухожилие, которое называется АПОНЕВРОЗ


квадратные мышцы (m. quadratus lumborum и т.д.)

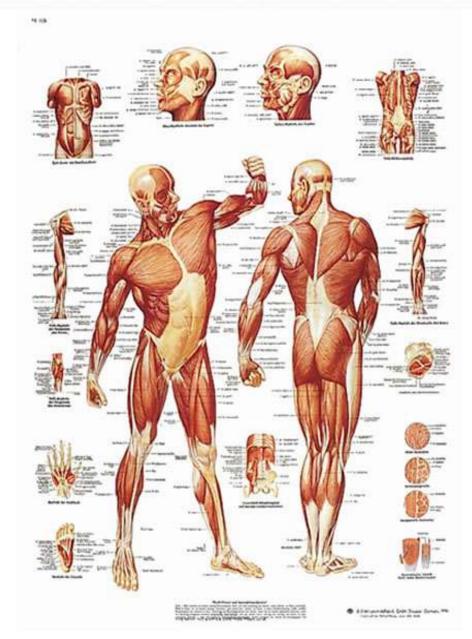




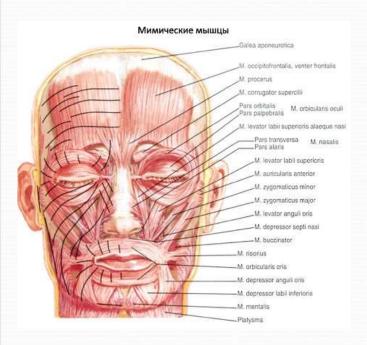



amidalis)

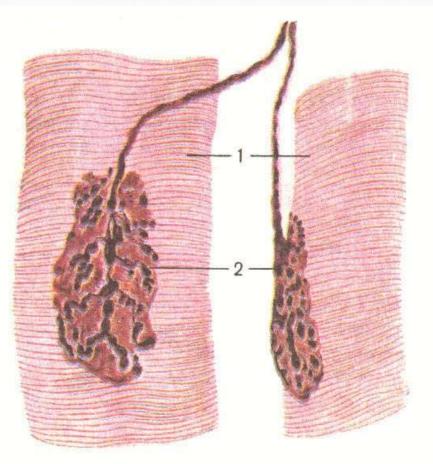
KPYTTLTE Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



ДЕЛЬТОВИДНАЯ (m. deltoideus) ЗУБЧАТАЯ (m. serratus)

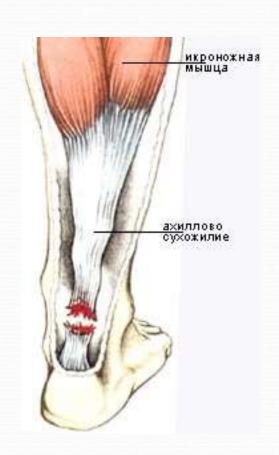

II. По топографии:

- головы;
- шеи;
- груди;
- спины;
- живота;
- конечностей


II. По развитию:

- миотомные;
- жаберные;

Структурно-функциональной единицей мышцы является - *мион*


Это мотонейрон с иннервируемой группой мышечных волокон. Каждое подходящее к мышце нервное волокно ветвиться и заканчивается моторными бляшками. Число мышечных волокон, связанных с одной нервной клеткой колеблется от 1 до 350 в плечелучевой мышце и 579 в трехглавой мышце голени.

Нервно-мышечная пластинка: 1 — мышечное волокно, 2 — моторная бляшка

Сухожилия не передают суммарную тягу мышечных волокон костям

К кости сухожилия присоединяются за счет переплетения своих волокон с коллагеновыми волокнами надкостницы. К костям сухожилия прикрепляются либо по концентрированному типу, либо дисперсно.

В первом случае на кости образуется бугорок или гребень, а во втором - углубление. Сухожилия очень прочны. Например, пяточное (Ахилово) сухожилие выдерживает нагрузку в 400 кг., а сухожилие четырехглавой мышцы бедра - 600 кг. Это приводит к тому, что при чрезмерных нагрузках отрывается бугристость кости, а сама кость остается целой.

Сухожилия имеют богатый иннервационный аппарат и обильно кровоснабжается. Установлено, что кровоснабжение мышечной ткани как бы мозаично: в наружных областях васкуляризация в 2 раза больше, чем в глубоких. Обычно на 1мм³ приходится от 300-400 до

1000 капилляров.

Функции скелетных мышц:

- 1. Статическая и динамическая работа.
- 2. Теплообразующая функция.
- 3. Укрепление суставов.
- 4. Рецепторные поля мышцы.
- 5. Участие в осуществлении дыхания, пищеварения, жевания, глотания.
- 6. Поддерживание естественного положения внутренних органов.
- 7. «Периферические сердца».

Статическая и динамическая работа

Кости и связки как пассивная часть аппарата движения не способны к самостоятельной работе и нуждаются в органах, которые приводили бы их в движение. Таким двигателем являются мышцы как активная часть аппарата движения, осуществляющие свою работу не только при движениях, но и в состоянии покоя (поза).

Теплообразующая функция

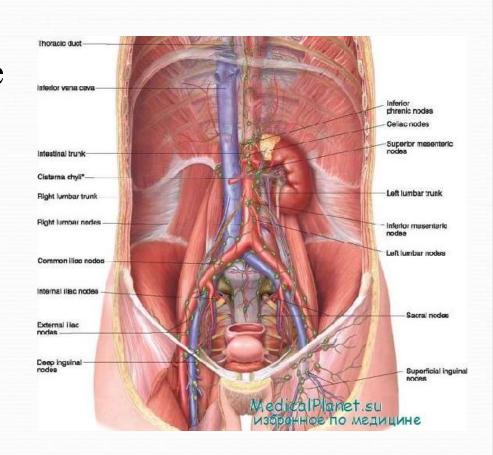
Мышечная ткань является преобразователем химической, или вернее, биохимической энергии в механическую работу.

Паровая машина может превращать в полезную работу только 10% тепловой энергии - мышцы от 20 до 40% химической энергии молекул пищевых веществ, например глюкозы, остальная энергия переходит в тепло. Это тепло используется для поддержания температуры тела.

Если человек не производит мышечной работы, то образуемого в организме тепла недостаточно, чтобы поддержать температуру тела в условиях холода, тогда мышцы начинают сокращаться непроизвольно (человек «дрожит») и образующееся при этом тепло восстанавливает и поддерживает нормальную температуру тела.

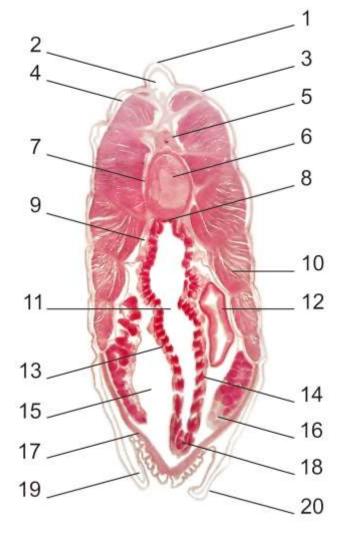
Укрепление суставов

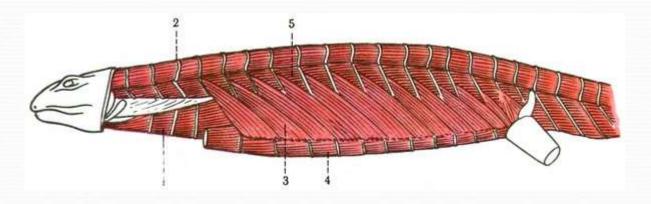
Мышцы можно рассматривать как один из видов непрерывного соединения при помощи скелетной мускулатуры.


Рецепторные поля мышц

Мышцы содержат специальные нервные образования благодаря которым человек ощущает положение тела в пространстве, чувствует температуру, механическое давление и т.д.

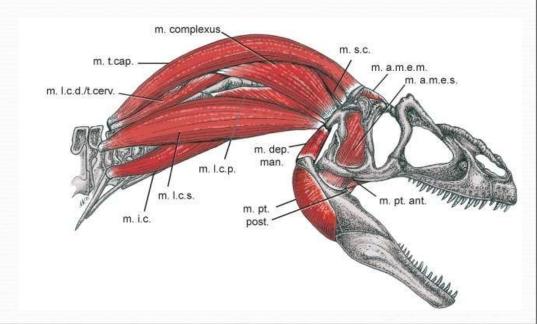
Поддерживание естественного положения внутренних органов


Обеспечивают естественное положение внутренних органов, создают опору для них (мышцы таза, живота), обеспечивают внутрибрюшное давление, являются ложем для некоторых внутренних органов.


«Периферические сердца»

«Периферические сердца», т. е. при своем сокращении скелетная мышца обеспечивает обратный ток крови или лимфы от периферии к сердцу по венам и лимфатическим сосудам.

- •В филогенезе хордовых мышечная система последовательно проходит ряд стадий.
- У ланцетника она представлена парной продольной мышцей (правой и левой), которая идет вдоль тела и разделяется соединительнотканными перегородками (миосептами) на короткие прямые мышечные пучки (миомеры). Такое (сегментарное) деление единого мышечного пласта называется метамерией.



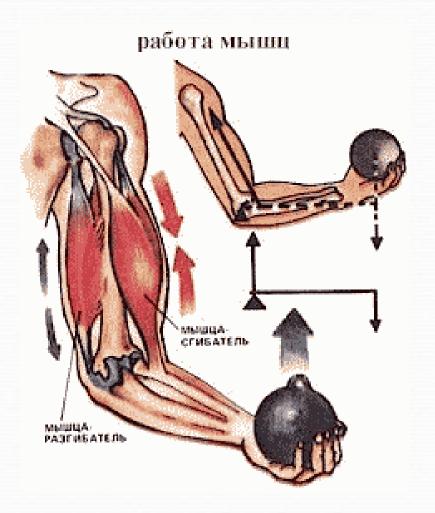
С увеличением подвижности, обособлением головы и развитием конечности (в виде плавников) у рыб происходит разделение продольной мышцы горизонтальной септой на дорсальную и вентральную мышцы, а так же обособление мускулатуры головы, туловища, хвоста и плавников.

С выходом на сушу и увеличением разнообразия движений у амфибий и рептилий происходит разделение дорсальной мышцы, так же как и вентральной, на два тяжа: <u>латеральный (поперечно-реберная мышца) и медиальный (поперечно-остистая м.).</u> Кроме этого, у рептилий из латерального тяжа впервые появляются подкожные мышцы, которые прикрепляются к коже.

У более высокоорганизованных животных (птиц и млекопитающих) происходит дальнейшая дифференциация мышечной системы: латеральный и медиальный тяжи, каждый из них, разделяются на два слоя (поверхностный и глубокий). Кроме этого, у млекопитающих впервые появляется диафрагма.

Онтогенетическое происхождение скелетных мышц

- 1. Мышцы туловища, конечностей, диафрагмы туловищные миотомы;
- 2. Мышцы языка затылочные миотомы (зажаберные);
- 3. Наружные мышцы глаза предушные миотомы.
- 4. Мышцы головы (мимические и жевательные) развиваются из несегментированной мезодермы жаберных дуг.


Мышцы глазного яблока формируются из предушных миотомов.

Этапы развития скелетных мышц

Источником развития поперечно-исчерченной ткани является средний зародышевый листок - мезодерма.

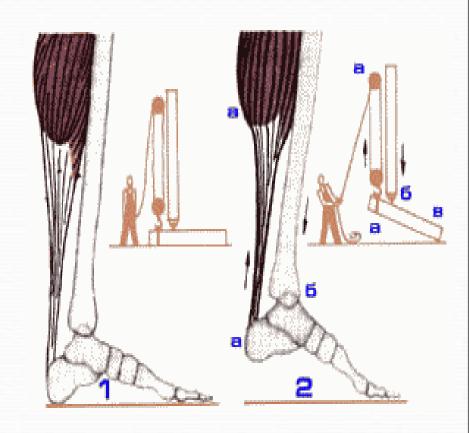
- 1. Формирование из осевой мезодермы сомитов (39 пар);
- 2. Дифференцировка сомитов на дермасклеромиотом. Миотомы, разрастаясь в вентральном и дорзальном направлениях дают начало скелетной мускулатуре. Миотом расщепляется на соматический и висцеральный листки.
- 3. Преобразование миотомов: расщепление, срастание отдельных (соседних) миотомов (прямая мышца живота); дегенерация, полная или частичная миграция зачатков мышц.

- Мышцы, сокращаясь или напрягаясь, производят работу. Она может выражаться в перемещении тела или его частей. Такая работа совершается при поднятии тяжестей, ходьбе, беге. Это динамическая работа.
- При удерживании частей тела в определенном положении, удерживания груза, стоянии, сохранении позы совершается статическая работа.
- Одни и те же мышцы могут выполнять и динамическую, и статическую работу.

• Сокращаясь, мышцы приводят в движение кости, действуя на них, как на рычаги. Кости начинают двигаться вокруг точки опоры под влиянием приложенной к ним силы.

Движение в любом суставе обеспечивается как минимум двумя мышцами, действующими в противоположных направлениях. Их называют мышцы-сгибатели и мышцы-разгибатели.

Например, при сгибании руки двуглавая мышца плеча сокращается, а трехглавая мышца расслабляется. Это происходит потому, что возбуждение двуглавой мышцы через центральную нервную систему вызывает расслабление трехглавой мышцы.


• Скелетные мышцы прикрепляются с двух сторон от сустава и при своем сокращении производят в нем движение.

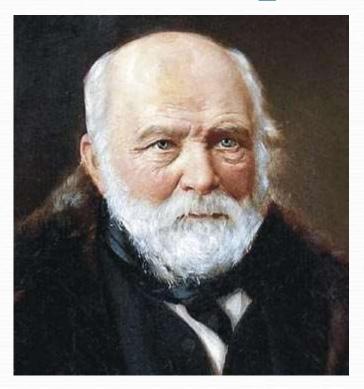
Обычно мышцы, осуществляющие сгибание, - флексторы - находятся спереди, а производящие разгибание - экстензоры - сзади от сустава. Только в коленном и голеностопном суставах передние мышцы, наоборот, производят разгибание, а задние - сгибание.

• Мышцы, лежащие снаружи (латерально) от сустава, - абдукторы - выполняют функцию отведения, а лежащие кнутри (медиально) от него - аддукторы - приведение. Вращение производят мышцы, расположенные косо или поперечно по отношению к вертикальной оси (пронаторы - вращающие внутрь, супинаторы - кнаружи).

• В осуществлении движения участвует обычно несколько групп мышц. Мышцы, производящие одновременно движение в одном направлении в данном суставе, называют синергистами (плечевая, двуглавая мышцы плеча); мышцы, выполняющие противоположную функцию (двуглавая, треглавая мышца плеча), антагонистами. Работа различных групп мышц происходит согласованно: так, если мышцысгибатели сокращаются, то мышцы-разгибатели в это время расслабляются.

• Схема, показывающая действие икроножной мышцы при подъеме на пальцах. Мышцы развивают большую силу по принципу рычага:1 -Исходное положение при опоре на всю стопу; 2 -Момент подъема на пальцы ног: а,б - точки приложения сил, в - точка опоры.

- Для тонкого управления мышечной активностью необходима регуляция напряжения, развиваемого каждой отдельной мышцей. Такая регуляция осуществляется одним из двух способов (или одновременно обоими):
 - 1. Может изменяться число мышечных волокон, возбуждающихся в каждый данный момент. Развиваемая мышцей сила будет тем больше, чем больше будет число стимулированных волокон, и наоборот. Так обычно обстоит дело в скелетных мышцах.


• 2. Может изменяться частота нервных импульсов, приходящих к мышечным волокнам. Таким образом, более частая стимуляция тоже будет приводить к увеличению развиваемой мышцей силы.

Сокращение мышц в организме происходит плавно и координированно. Это обеспечивается асинхронным сокращением разных групп мышечных волокон в мышцах-антагонистах.

• І.Фасции

соединительнотканные оболочки, которые покрывают мышцы и образуются за счет соединительной ткани самих мышц. Они отграничивают мышцы друг от друга, разделяют группы мышц, сосудисто-нервные пучки.

Н.И. Пирогов

обосновал принцип футлярного строения фасций, показал прикладное значение, детально описал анатомию фасций. В одних случаях фасциальные оболочки играют роль преграды на пути распространения патологического процесса, в других, наоборот - фасциальные футляры служат путями распространения патологического процесса.

Хирургическая АНАТОМИЯ Фасций и клетчаточных пространств ЧЕЛОВЕКА

По мнению В. В. Кованова фасции можно отнести к «мягкому остову человеческого тела» (различные соединительно-тканные структуры), которые существенно дополняют костный скелет. Фасции предохраняют сосуды и нервы от сдавления и являются для них проводниками.

Функции фасций:

- 1. Фасции способствуют направленному сокращению мышечных волокон и при отсутствии её волокна оказались бы в очень разных условиях: глубокие волокна должны при сокращении преодолевать сопротивление расположенных над ними мышц, тогда как лежащие более поверхностно могут утолщаться, не встречая сопротивления. Фасция ставит в одинаковые положения все волокна в смысле необходимости преодолевать сопротивление.
- Нарушение целостности фасции приводит к мышечной грыже.

Функции фасций:

- 2. Уменьшают трение мышц при их работе;
- 3. Выполняет функцию объединения всех групп мышц в единое целое (поверхностная или подкожная фасция, fascia superficialis).

Классификация фасций:

По расположению:

- І. Подкожная (поверхностная);
- II. Собственная
 - 1) поверхностный листок;
- 2) глубокий листок (объединяясь могут участвовать в формировании межмышечной перегородки)

Классификация фасций:

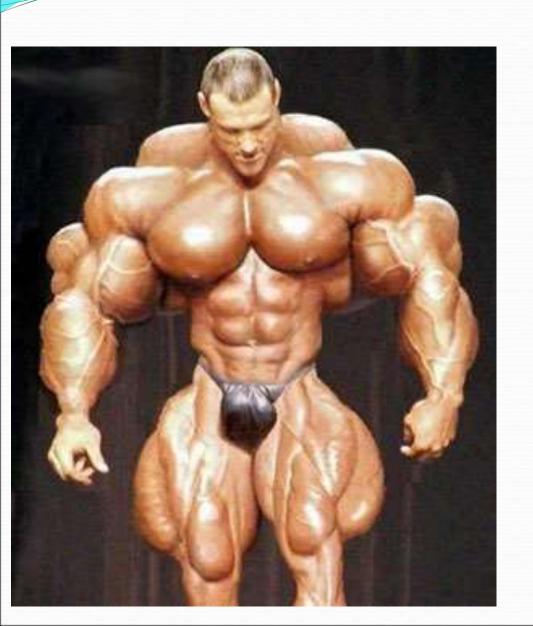
По строению:

- 1) плотная фасция вокруг мышц с сильным боковым давлением;
- 2) рыхлая фасция окружает сосудисто-нервный пучок, органы, отдельные мышцы;
 - 3) утолщение фасций в виде сухожильных дуг, удерживателей мышц.

• П.Костно-фиброзный (фиброзный) канал

Канал, располагающийся между костями и удерживателями сухожилий мышц. Они пропускают сухожилия мышц, устраняя их боковое смещение и способствуют более точному направлению мышечной тяги.

III. Синовиальное влагалище сухожилия выстилает стенку фиброзного (костно-фиброзного) канала, заворачиваясь по концам канала на сухожилие мышцы, облегчает скольжение сухожилия.


Синовиальное влагалище представлено висцеральным и париетальным листками, между которыми располагается небольшое количество синовиальной жидкости, являющейся смазкой.

В месте удвоения обеих листков (при переходе одного листка в другой), называемым брыжейкой сухожилия (mesotendineum) проходят сосуды и нервы сухожилия мышцы – костный выступ в виде желобка

IV. Синовиальная сумка — замкнутая полость с синовиальной выстилкой и жидкостью, расположенный между мышцей и костью или сухожилием в местах наибольшей подвижности. Уменьшают трение и увеличивают объем движений.

V. Блок, покрытого хрящем.

VI. Сесмовидная кость — формируется из синовиальной оболочки сустава и располагается в толще сухожилия. Выполняя такую же функцию, как и блок.

Благодарю за внимание!