МФБГОУ ВО

«Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации

СПЕЦИАЛЬНАЯ ФАРМАЦЕВТИЧЕСКАЯ ХИМИЯ

СОЛОДУНОВА Г.Н.

ПРОИЗВОДНЫЕ ИНДОЛА

РЕЗЕРПИН

ФИЗОСТИГМИНА САЛИЦИЛАТ И ЕГО ПОЛУСИНТЕТИЧЕСКИЙ АНАЛОГ – ПРОЗЕРИН СТРИХНИНА НИТРАТ

Занятие 12 VIII семестр

Дисциплина

СПЕЦИАЛЬНАЯ ФАРМАЦЕВТИЧЕСКАЯ ХИМИЯ

VIII CEMECTР ЗАНЯТИЕ № 12

ПРОИЗВОДНЫЕ ИНДОЛА РЕЗЕРПИН ФИЗОСТИГМИНА САЛИЦИЛАТ И ЕГО ПОЛУСИНТЕТИЧЕСКИЙ АНАЛОГ – ПРОЗЕРИН

ВОПРОСЫ К ЗАНЯТИЮ

СТРИХНИНА НИТРАТ

- 1. Производное индола резерпин. Выделение из природных источников, полный фармацевтический анализ.
- 2. Производное индола физостигмин (Эзерин). Выделение из природных источников, полный фармацевтический анализ.
- 3. Синтетический аналог (по денйствию) физостигмина прозерин. Синтез, полный фармацевтический анализ.
- 4. Производное индола стрихнин. Структура, полный фармацевтический анализ.

РЕЗЕРПИН

Reserpinum

7 l-(11,17-диметокси-16-карбметокси-18-(3',4',5'-триметоксибензоил)--оксиаллоиохимбан.

В корнях индийского растения раувольфии змеиной (*Rauwolfia serpentina Benth.*), семейства кутровых — *Аросупасеае*, содержится около 40 различных алкалоидов. Некоторые из них обладают очень ценным седативным и гипотензивным действием (резерпин, ресциннамин), а другие (иохимбин, раувольфин, серпагин) вызывают адренолитический эффект.

Резерпин и сопутствующие ему алкалоиды – производные аллоиохимбана, основу химической структуры которого составляют индол (ядро AB), дегидрохинолизидин (CD) или гидрированный карболин (ABC).

Резерпин и некоторые другие алкалоиды раувольфии представляют собой сложные эфиры резерпиновой кислоты (или сходных с ней по химической структуре кислот):

- Алкалоиды извлекают из измельченных корней эфиром в виде оснований после обработки раствором аммиака.
- > Затем переводят в соли винной кислоты и вновь в основания.
- Разделение смеси алкалоидов производят с помощью адсорбционной хроматографии. Выделяют зону резерпина и извлекают алкалоид дихлорэтаном.
- ▶ И затем перекристаллизовывают из метанола.

Резерпин — белый или желтоватый мелкокристаллический порошок. В медицине применяют левовращающий оптический изомер основания резерпина. Подобно другим основаниям, он очень мало растворим в воде и этаноле, но легко растворим в хлороформе и уксусной кислоте.

Подлинность

Резерпин – двойной сложный эфир резерпиновой кислоты. При гидролизе образует метиловый спирт, триметоксибензойную и резерпиновую кислоты. Это является подтверждением химической структуры резерпина.

1. Инструментальные методы

Подлинность (по $M\Phi$) подтверждают по $\underline{\textit{ИK-спектру}}$, который должен соответствовать спектру сравнения резерпина или его стандарта.

Установить подлинность резерпина можно с помощью <u>спектрофотометрии</u> <u>в УФ-области</u>. ФС регламентирует величину оптической плотности 0,002%-ного спиртового раствора в максимуме поглощения (268 нм) и в интервале длин волн 288–295 нм.

2. Цветные реакции при действии кислот

Для испытания резерпина используют реакции окисления и конденсации. Как и другие производные индола, резерпин легко окисляется с образованием окрашенных продуктов. Он дает цветные реакции с

- концентрированной серной кислотой (желтое),
- > азотной кислотой (желтое, переходящее в кирпично-красное),
- > смесь этих кислот (желто-зеленое)
- ▶ при добавлении реактива, состоящего из хлорида железа (III) и фосфорной кислоты, желтая окраска переходит в ярко-синюю,
- ▶ если использовать в качестве реактива дихромат калия в присутствии концентрированной уксусной кислоты, то появляется ярко-зеленая окраска, переходящая в фиолетовую, а затем в красновато-коричневую.

3. Взаимодействие с общеалкалоидными реакивами

- ➤ С реактивом Фреде (насыщенный раствор молибденовой кислоты в концентрированной серной кислоте) (синее, переходящее в зеленое),
- ➤ С реактивами Марки и Манделина (200 миллилитров серной кислоты на 1 грамм ванадата аммония) (синее, при нагревании зеленое). С пикриновой кислотой образует пикрат (т. пл. 186 °C).

4. Нитрозирование резерпина

При действии раствором нитрита натрия в кислой среде образуется N-нитрозо-резерпин имеющий зеленую флуоресценцию:

5. Окисление резерпина

Для выполнения цветных реакций могут быть использованы окислители – перманганат калия, хлорная вода, пероксид водорода и др.

При окислении резерпина иодатом калия в уксуснокислой среде (после нагревания) происходит образование 3-дегидрорезерпина — окрашенного продукта, имеющего максимум светопоглощения в области 390 нм. Данную реакцию используют для идентификации и фотоколориметрического определения резерпина в лекарственных формах:

Резерпин после нагревания со смесью разведенной уксусной кислоты и раствора иодида калия приобретает желтое окрашивание.

6. Конденсация с альдегидами:

Реакция Ван-Урка

Окрашенные соединения резерпин образует, вступая в реакции конденсации с альдегидами. Сам резерпин непосредственно не вступает в реакцию SE, но, в присутствии кислот происходит разрыв кольца «С» и освобождается реакционно-способное положение 2 по которому происходит взаимодействие с ароматическим альдегидом. С раствором ванилина в хлороводородной кислоте он приобретает розовое окрашивание, а раствор n-диметиламинобензальдегида в присутствии ледяной уксусной и серной кислот вначале окрашивается в зеленый цвет, который после добавления избытка ледяной уксусной кислоты переходит в красный.

Количественное определение

1. Количественное определение резерпина выполняют методом неводного титрования в среде ледяной уксусной кислоты. (Реакцию писать).

2. Учитывая, что резерпин образует гидрохлорид в эквимолекулярном соотношении (1:1), можно титровать резерпин также в спиртовой среде с помощью 0,1 М хлороводородной кислоты (индикатор метиловый красный):

$$C_{33}H_{40}O_9N_2 + HC1 \longrightarrow C_{33}H_{40}O_9N_2 \cdot HC1$$

3. Известен также способ количественного определения резерпина фотометрическим методом. Способ основан измерении на светопоглощения при длине волны 390 нм окрашенного продукта взаимодействия резерпина с нитритом натрия присутствии концентрированной серной кислоты. Расчеты выполняют относительно стандартного образца после взаимодействия с реактивом в тех же условиях. (Реакцию писать).

Хранение, применение

Резерпин хранят по списку A, в хорошо укупоренных банках оранжевого стекла, в прохладном, защищенном от света месте. Он способен к изомеризации и окислению под действием света, воздуха, нагревания. Особенно легко окисляются растворы, в которых резерпин может также гидролизоваться.

Резерпин применяют в качестве нейролептического и гипотензивного средства. Назначают для лечения гипертонической болезни и при нервнопсихических расстройствах, а также при паркинсонизме.

ПРОИЗВОДНЫЕ МЕТА-АМИНОФЕНОЛА

Эффективным антихолинэстеразным средством является выделенный из калабарских бобов (Faba calabarica) западноафриканского растения Physostigma venenosum Bulf. сем. бобовых (Fabaceae) алкалоид физостигмин, который в виде салицилата применялся в медицине.

Согласно химической классификации, физостигмин относится к производным индола, так как в основе его химической структуры лежит конденсированная структура индола:

Химическая структура физостигмина изучалась на основании исследования продуктов разложения. Было установлено наличие в его молекуле метилуретановой группировки. Это подтверждается тем, что при щелочном гидролизе происходит образование метиламина, карбоната натрия и имеющего гетероциклическую структуру конденсированную с фенолом, эзеролина:

$$H_3$$
С H_3 С H_2 О H_2 О H_3 H_4 О H_4 С H_3 H_5 О H_5 С H

ФИЗОСТИГМИНА САЛИЦИЛАТ Physostigmini salicylas

Извлечение физостигмина (эзерина) из растительного сырья представляет собой сложный процесс, так как эзерин и его соли очень чувствительны к воздействию света, воздуха, температуры.

Эзерин извлекают из калабарских бобов эфиром, предварительно обработав их содой для перевода солей алкалоидов в основания. Эфирную вытяжку хранят под слоем парафина, чтобы предотвратить окисление эзерина в процессе его выделения. Эфирную вытяжку концентрируют и обрабатывают разбавленной серной кислотой. Сернокислый раствор обрабатывают сернистым газом и осаждают в виде основания и затем переводят в салицилат — наиболее прочную соль эзерина. Структурная формула была подтверждена синтезом в 1935 году. Эзерин — монокислотное основание за счет образования солей по азоту цикла «С». Соли эзерина очень непрочны — они быстро притягивают влагу из воздуха и синеют (вследствие отщепления уретановой группировки и образования свободного фенольного гидроксила).

Подлинность

При щелочном гидролизе эзерина образуются метиламин, углекислота, и основание со свободной фенольной группы – эзеролин.

1. Обнаружение салициловой кислоты

▶ При действии раствора окисного железа в кислой среде образуется салицилат железа фиолетового цвета:

> При действии раствора формальдегида в серной кислоте (реактив Марки),

образуется ауриновый краситель красного цвета:

2. Получение эзеролинового-голубого

К 1-2 каплям исследуемого раствора по 2-3 капли 0,1н раствора кислоты азотной и 0,1 мол. раствора натрия нитрита и через 1 мин приливают каплю раствора натра едкого. В результате появляется фиолетовое окрашивание (эзеролиновый-голубой)

3. Выделение основания эзерина

При действии аммиака и выпаривания раствора получается остаток синего цвета (основание эзерина):

После растворения остатка в спирте и добавлении уксусной кислоты появляется красное окрашивание и флюоресценция, усиливающаяся при разбавлении водой.

4. Температура плавления

Температура плавления препарата физостигмина салицилата -186 °C.

Количественное определение

1. Нейтрализация

Количественноре осдержание препарата определяется по связанной салициловой кислоте методом нейтрализации. Рабочим раствором является 0,1 Н NaOH. Для растворения основания среда берётся спирто-хлороформная.

Хранение Применение

Эзерин очень непрочное соединение. Растворы его солей готовят по мере необходимости. Стерлизовать их нельзя. Хранить препарат в хорошо укупоренных склянках из оранжевого стекла в защищенном от света месте.

Эзерин способен суживать зрачок и понижать внутриглазное давление, это свойство обеспечивает ему широкое в медицине в качестве антиглаукомного средства. Применяют в виде глазных капель и подкожно.

Ценные фармакотерапевтические свойства физостигмина, отсутствие отечественного сырья для его получения стимулировали проведение исследований в области изучения связи между химической структурой его аналогов и их действием на организм.

Было доказано, что продукт гидролиза физостигмина – эзеролин физиологически неактивен. Это позволило предположить, что действие метилуретановой физостигмина обусловлено наличием группировки. Установлено, что биологическая активность сохраняется, если эта группа связана с фенолом более простой химической структуры, чем эзеролин. В результате синтеза и исследования многочисленных карбаминовых эфиров производных подтверждена высокая активность диметиламинофенольной структуры с общей формулой

$$\begin{bmatrix} R_1 & CH_3 \\ N & O & N \\ CH_3 & CH_3 \end{bmatrix} CH_3SO_4^-$$

Самым активным из них оказалось вещество, сходное по строению с физостигмином ($R_1 = H$; $R_2 = CH_3$). Однако оно не имеет практической ценности из-за нестойкости растворов. Менее активным, но более устойчивым является диметилуретановое производное ($R_1 = CH_3$; $R_2 = CH_3$), в настоящее время широко применяемое в медицине лекарственное вещество неостигмина метилсульфат (прозерин).

ПРОЗЕРИН

Hеостигмина Метилсульфат Neostygmine Methylsulfate

N-(м-диметилкарбамоилоксифенил)-триметиламмоний метилсульфат

Получение

Синтезируют неостигмина метилсульфат из диметиланилина по схеме:

$$CH_3$$
 HNO_3 H_3C NO_2 HI NO_2 NO

Натрия

м-диметиламинофенола

Неостигмина метилсульфат

кристаллический Белый порошок без запаха, горького вкуса. Гигроскопичен. На свету приобретает розовый оттенок. Т.пл. 144–149 °C Неостигмина метилсульфат очень легко растворим в воде, легко растворим в этаноле и хлороформе, практически нерастворим в эфире.

Подлинность

1. Инструментальные методы

Подлинность подтверждают по ИК-спектру (МФ), сравнивая со спектром сравнения и по УФ-спектру 0.04%-ного водного раствора. Он имеет максимумы светопоглощения в области 230-280 нм при 260 и 266 нм и перегиб при 258 нм.

2. Образование полииодида

Из водного раствора неостигмина метилсульфата при добавлении раствора иода в присутствии KI выпадает коричневого цвета осадок полииодида:

$$\begin{bmatrix} CH_3 & CH_3 \\ H_3C-N & O \\ H_3C & O \end{bmatrix} CH_3$$

$$CH_3 & CH_3$$

3. Определение продуктов щелочного разложения

Наличие диметилкарбамоильной группы и серы в ионе метилсульфата устанавливают после предварительного разложения путем нагревания на водяной бане с 30%-ным раствором гидроксида натрия:

- ➤ Выделяющийся при гидролизе диметиламин обнаруживают по характерному запаху и изменению окраски влажной лакмусовой бумаги в синий цвет.
- > Сульфат-ион открывают реакцией с раствором хлорида бария.
- ➤ Образовавшийся *м*-диметиламинофенол можно обнаружить, используя реакцию азосочетания с диазотированной сульфаниловой кислотой. Полученный азокраситель имеет красно-оранжевое окрашивание:

$$\begin{array}{c|c} CH_3 & H_3C \\ \hline \\ H_3C & N-CH_3 \\ \hline \\ -HCI & HO \\ \hline \\ -HCI & N-CH_3 \\ \hline \\ -SO_2OH \cdot CI^- \\ \hline \\ -SO_2OH \cdot CI^- \\ \hline \\ -SO_2OH \cdot CI^- \\ \hline \\ \\ -SO_2OH \cdot CI^- \\ \hline \\ -$$

Доброкачественность:

Учитывая нестабильность водных растворов, Φ С предусматривает установление наличия светопоглощающих примесей в 0,5%-ном растворе неостигмина метилсульфата на спектрофотометре при 294 нм. Оптическая плотность не должна превышать 0,15.

Количественное определение

1. Метод Къельдаля

Количественное определение неостигмина метилсульфата основано на рассмотренной реакции гидролиза (см.). Выполняют ее в колбе Кьельдаля, действуя 30%-ным раствором гидроксида натрия и количественно отгоняя выделившийся диметиламин в приемник, содержащий раствор борной кислоты. Образуется тетрагидроксиборат диметиламина:

$$B(OH)_3 + H_2O \longrightarrow H[B(OH)_4]$$

$$H_3C \xrightarrow{H} H_3C \xrightarrow{H} H_3C \xrightarrow{H} CH_3 \cdot [B(OH)_4] \xrightarrow{H} H_3C \xrightarrow{H} H_3C$$

Затем содержимое приемника титруют 0,1 М раствором хлороводородной кислоты:

$$H_{3}C \stackrel{+}{\sim} H_{3} \stackrel{-}{\sim} [B(OH)_{4}]^{-} + HCI \stackrel{\longrightarrow}{\longrightarrow} H_{3}C \stackrel{+}{\sim} H_{3} \stackrel{-}{\sim} CI^{-} + B(OH)_{3} + H_{2}O$$

В качестве индикатора используют метиловый красный.

2. Иодометрическое титрование

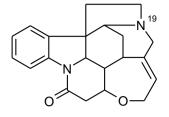
Реакция образования полииодида может быть использована для иодометрического определения неостигмина метилсульфата. В качестве титранта применяют 0,1 M раствор иода. (Реакцию писать).

3. Спектрофотометрическое определение

Количественное определение неостигмина метилсульфата может быть выполнено спектрофотометрическим или экстракционнофотометрическим методом с использованием в качестве реагента сульфофталеинового красителя — бромтимолового синего и экстрагента - хлороформа. Оптическую плотность измеряют при длине волны 415 нм.

Хранение

Неостигмина метилсульфат хранят по списку А в защищёном от света, сухом месте, учитывая не только его способность окисляться на воздухе, но и гигроскопичность.


Применение

Неостигмина метилсульфат применяют как синтетический аналог физостигмина в качестве антихолинэстеразного и антимиастенического средства, антагониста курареподобных лекарственных веществ. В глазной практике назначают его в виде 0,5%-ных растворов. При миастении, двигательных нарушениях различной этиологии, невритах вводят внутрь по 0,01–0,015 г или подкожно до 1 мл 0,05%-ного раствора.

СТРИХНИН

Стрихнин и сопутствующий ему бруцин содержатся в семенах Strychnos Nux vomica (рвотные орешки). Этот вид растений давно был известен своей ядовитостью на островах Зондского архипелага и применялся местными жителями в качестве стрельных ядов.

Стрихнин впервые был выделен из семян чилибухи в 1818 г Пельтъе и Кавенту и до сих пор это сырьё остаётся основным источником для получения стрихнина. В больших дозах, стрихнин являенся одним из самых сильных судорожных ядов, но в малых дозах (0,001 г) обладает очень ценным терапевтическим свойством — возбуждать центральную нервную систему. Структурная формула была установлена после полного химического синтеза, осуществленного Вудвордом (США) в 1954 г.

Стрихнин является сложным конденсированным многоядерным соединением, состоящим из семи колец. Один атом азота (N_{19}) в структуре стрихнина является третичным атомом, имеющим основной характер и он способен давать соли с кислотами. Второй атом азота находится в

лактамной группе, которая может размыкаться при действии спиртовой щёлочи с образованием соли карбоновой кислоты и вторичной аминогруппы.

Фармакопейным препаратом является стрихнина нитрат (Strychnini nitras). Препарат представляет собой бесцветные, блестящие игольчатые кристаллы или белый кристаллический порошок горького вкуса. Трудно растворим в воде и спирте, легко в кипящей воде, не растворим в эфире. Реакции подлинности стрихнина основаны на его химических свойствах.

Подлинность:

1. Окисление в кислой среде.

По ГФ стрихнин можно обнаружить по характерным продуктам окисления. При действии на препарат кристаллами бихромата калия в присутствии концентрированной серной кислоты на стенках фарфоровой чашки образуются быстро исчезающие полосы фиолетового и синего цвета.

2. Реакция Витали-Морена.

С азотной кислотой стрихнин дает желтое окрашивание (продукт нитрования бензольного кольца). После выпаривания остаток обрабатывают спиртовым раствором щелочи - появляется краснофиолетовое окрашивание — образуется ацисоль:

3. Взаимодействие с общеалкалоидными реактивами:

Стрихнин дает цветные осадки с общеалкалоидными реактивами. Особенно чувствительными для него реактивами являются: реактив Драгендорфа, реактив Майера, фосфорновольфрамовая кислота. Реактивы Эрдмана, Фреде и Марки реакций окрашивания со стрихнином не дают.

4. Конденсация с ванилином:

При нагревании на водяной бане с 1 % раствором ванилина в глицерине, в присутствии разведенной серной кислоты стрихнин дает розовофиолетовое окрашивание (индольная группировка):

5. Обнаружение нитрат-иона

Наличие солевой форме срихнина нитрат иона обнаруживается классической реакцией с дифениламином в среде концентрированной серной кислоты. Дифениламин окисляется нитрат-ионом дифенилдифенохинондиимина гидросульфата, ДО окрашенного в синий цвет.

$$\begin{array}{c|c} & & & \\ &$$

дифениламин

дифенилдифенохинондиимино гидросульфат

Доброкачественность:

В качестве примесей в препарате может быть бруцин, который обнаруживается по розовому окрашиванию после добавления нескольких капель концентрированной азотной кислоты. $\Gamma\Phi$ X устанавливает предел кислотности и допускает примеси хлоридов и сульфатов в пределах эталона.

Количественное определение:

1. Алкалиметрия

Стрихнина нитрат в препарате определяется методом нейтрализации по азотной кислоте - титруется щелочью в спирто-хлороформной среде (для извлечения нерастворимого в воде основания):

• HNO₃ + NaOH
$$\xrightarrow{\Phi-\Phi}$$
 NaNO₃ + H₂O +

Применение

Стрихнин возбуждающе действует на центральную нервную систему, тонизирует скелетную мускулатуру, мышцу серца, стимулирует обменные процессы. В больших дозах вызывает судороги. Применяется как тонизирующее средство при пониженных процессах обмена, быстрой утомляемости, гипертонической болезни.

СЕКУРИНИНА НИТРАТ

Securinini nitras

К аналогам стрихнина по действию относится секуринин. Он был выделен в 1953 г из листьев уссурийского растения секуринеги полукустарниковой (Securinega suffruticosa) семейства молочайных. В 1963 году японскими химиками было установлено строение этого алкалоида, а в 65 году осуществлён синтез секуринина, предполагаемую структуру которого подтвердили продукты его расщепления.

Секуринина основание — кристаллический порошок лимонно-жёлтого цвета (золотистый иней) с $T_{пл}$ 138-140 °C. Трудно растворим в воде, хорошо в спирте, в хлороформе. При нагревании с растворами щелочей основание полностью растворяется вследствие размыкания лактонного кольца и образования

соответствующей соли. При действии кислот вновь образуется основание.

По химической классификации секуринин относится к группе пиперидиновых алкалоидов (Орехов А.П.).