МФБГОУ ВО

«Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации

СПЕЦИАЛЬНАЯ ФАРМАЦЕВТИЧЕСКАЯ ХИМИЯ

ГУРЕЕВА Е.С.

ГЕСТАГЕНЫ И ИХ СИНТЕТИЧЕСКИЕ АНАЛОГИ ЭСТРОГЕНЫ

V курс IX семестр Занятие 3

Дисциплина

СПЕЦИАЛЬНАЯ ФАРМАЦЕВТИЧЕСКАЯ ХИМИЯ

V курс IX CEMECTР ЗАНЯТИЕ № 3

ГЕСТАГЕНЫ И ИХ СИНТЕТИЧЕСКИЕ АНАЛОГИ ЭСТРОГЕНЫ

- 1. Гестагены. Прогестерон.
- 2. Гестагены и их синтетические аналоги. Прегнин.
- 3. Эстрогенные гормоны. Эстрон.
- 4. Эстрогенные гормоны. Эстрадиол. Эфиры эстрадиола.

Женские половые гормоны вырабатываются яичниками, имеют стероидную структуру. Фолликулы яичников продуцируют <u>эстрогенные гормоны</u>, с активностью которых связаны развитие вторичных половых признаков и пролиферативная фаза в первой половине менструального пикла.

В середине цикла регистрируют повышение уровня лютеинизирующего гормона, под влиянием которого происходит овуляция: из созревшего фолликула выделяется яйцеклетка и через маточные (фаллопиевы) трубы попадает в полость матки.

На месте разрушенного фолликула образуется желтое тело, которое начинает продуцировать <u>гестагенные гормоны</u>. При этом выработка эстрогенов резко уменьшается; развивается секреторная фаза цикла.

Если происходит оплодотворение яйцеклетки и возникает беременность, желтое тело развивается и продолжает выделять в кровь гестагенные гормоны, способствующие сохранению беременности.

Если оплодотворения яйцеклетки не произошло, желтое тело атрофируется и уровень гестагенов в крови снижается. В конце цикла повышается уровень эстрогенов, что способствует началу менструации.

Соответственно эстрогенным и гестагенным гормонам различают эстрогенные и гестагенные лекарственные препараты.

ГЕСТАГЕНЫ И ИХ СИНТЕТИЧЕСКИЕ АНАЛОГИ

Согласно современным представлениям, к гестагенам относят группу природных гормонов и их синтетических аналогов, обладающих биологической активностью прогестерона.

В процессе изучения механизмов действия гестагенов были получены данные о характере их влияния на созревание и выход яйцеклетки, имплантацию оплодотворенной яйцеклетки, поддержание и сохранение лобулярно-альвеолярного беременности, развитие аппарата железы, на центральную регуляцию секреции гонадотропинов и полового поведения. На основании этих исследований были разработаны различные гестагенные препараты, предназначенные только ДЛЯ гормонозаместительной терапии при дефиците эндогенного прогестерона, но и лечения нарушений менструального цикла, дисменореи, меноррагии, гормонозависимых опухолей, а также предупреждения нежелательной беременности.

В основе химического строения гестагенов лежит углеводород прегнан:

В медицинской практике применяют лекарственные препараты естественного гормона прогестерона и его полусинтетические аналоги прегнин, норэтистерон и медроксипрогестерона ацетат.

ПРОГЕСТЕРОН

Progesteronum

Прегнен-4-дион-3,20

Получение

- 1. Выделение из гормонов желтого тела свиней.
- 2. Получение из саласадина.

Полусинтетический способ из соласодина как промежуточный продукт синтеза кортизона.

$$CH_3$$
 CH_3
 CH_3

Соласодин Прегненолон

Прогестерон

3. Получение из холестерина.

Исходными продуктами промышленного синтеза могут также служить холестерин, диосгенин, 17-кетостероиды. Промежуточным продуктом при синтезе прогестерона из холестерина является прегненолон, который подвергают микробиологическому дегидрированию до прогестерона:

$$CH_3$$
 CH_3 CH_3

Физические свойства

Белый или со слабым желтоватым оттенком кристаллический порошок. Т. пл. 127–131°С. Удельное вращение от +190° до +200° (0,5%-ный раствор в этаноле). Практически нерастворим в воде, растворим в 95% спирте и эфире, очень легко растворим в хлороформе, трудно растворим в растительных маслах.

Подлинность

Инструментальные методы

- **1.** *ИК-спектроскопия.* ИК-спектр, снятый в вазелиновом масле в области $3700{\text{--}}400~\text{см}^{-1}$ должен полностью совпадать с прилагаемым к ФС рисунком спектра.
- **2.** *УФ-спектрофотометрия* основанна на измерении оптической плотности при 241 нм (максимум светопоглощения).

3. Тонкослойная хроматография.

Для испытания на подлинность Φ С и $M\Phi$ рекомендуют *метод ТСХ* на пластинках Силуфол У Φ -254 или с использованием в качестве адсорбента кизельгура P1 (силикагеля P1). Оценку производят после проявления хроматограмм путём сравнения положения, внешнего вида и

- интенсивности окраски основного пятна у испытуемого раствора и стандартного образца.
- **4.** *Метод ВЭЖХ* на колонках с прямой и обращенной фазами. Подлинность подтверждают по сравнительному времени удерживания основного пика на хроматограмме у испытуемого и стандартного образцов.
- **5. Поляриметрия.** Определяют удельное вращение, которое должно быть от $+190^{\circ}$ до $+200^{\circ}$ (0,5% раствор в 95% спирте).

Химические методы

1. Реакции на стероидный цикл.

- Взаимодействие с концентрированной серной кислотой. Появляется желтое окрашивание с зеленой флуоресценцией. Раствор охлаждают, прибавляют 3 мл хлороформа и встряхивают; оба слоя бесцветные.
- *реакция Боскотта*. Раствор препарата в смеси концентрированной уксусной кислоты и 88%-ной фосфорной дает интенсивную желтую флуоресценцию.

1. Реакции на карбонильную группу в 3-м положении.

 Образование оксима. При взаимодействии спиртового раствора препарата с гидрохлоридом гидроксиламина образуется оксим прогестерона, имеющий температуру плавления 240°C.

$$\begin{array}{c|c} CH_3 & CH_3 & CH_3 \\ \hline CH_3 & CH_3 & CH_3 \\ \hline -H_2O & -HCI & HO \\ \end{array}$$

Реакция осаждения 2,4-динитрофенилгидразона. Температуре разложения полученного 2,4-динитрофенилгидразона 270-275°С. Реакцию проводят при кипячении на водяной бане спиртового раствора прогестерона с 2,4-динитрофенилгидразином в присутствии концентрированной соляной кислоты.

2. Реакции обусловленные наличием двойной связи в кольце А.

- Взаимодействие с раствором перманганата калия. Происходит обесцвечивание раствора.
- *Взаимодействие с бромной водой*. Происходит обесцвечивание бромной воды.

3. Реакция на ацетильный фрагмент в 17 положении.

- *Взаимодействие с йодом*. При нагревании с йодом в щелочной среде образуется желтый осадок с характерным запахом йодоформ (CH₃).
- *Цветная реакция с щелочным раствором м-динитробензола*. Препарат растворяют в спирте, добавляют реактив, появляется розовое окрашивание, постепенно переходящее в красно-коричневое.

Доброкачественность

Методом ТСХ обнаруживают присутствие посторонних примесей в прогестероне на пластинках Силуфол УФ-254 или с использованием в качестве адсорбента кизельгура Р1 (силикагеля Р1). Оценку производят после проявления хроматограмм путём сравнения положения, внешнего вида и интенсивности окраски основного пятна у испытуемого раствора и стандартного образца. Допустимое содержание примесей посторонних стероидов в прогестероне не должно превышать 1,5%.

Описаны способы анализа на постороннием примеси прогестерона **методом ВЭЖХ** на колонках с прямой и обращенной фазами.

Количественное определение

- 1. Спектрофотометрия в максимуме поглощения (241 нм), используя в качестве растворителя этанол. Расчёт содержания в пересчёте на сухое вещество выполняют по величине предварительно установленного удельного показателя поглощения (535).
- **2.** *Метод ВЭЖХ* на колонках с прямой и обращенной фазами. По сравнительному времени удерживания основного пика на хроматограмме у стандартного образца, который используют в качестве внутреннего стандарта при выполнении количественного определения.

3. Гравиметрия. К препарату прибавляют 2,4-динитрофенилгидразин, 95% спирт и кипятят до растворения на водяной бане в колбе с обратным холодильником. Затем прибавляют концентрированной соляной кислоты и кипятят еще 15 минут. Содержимое колбы охлаждают до комнатной температуры и фильтруют. Промытый осадок сушат при 100°С до постоянной массы.

Хранение

Прогестерон является светочувствительным соединением. Хранят в сухом месте, в хорошо укупоренной таре, предохраняющей от действия света, при температуре не выше 20-25 °C. Форма выпуска: 0,5%, 1%, 2% масляные растворы, капсулы по 0,1г и 1% гель для местного применения.

Применение

Прогестерон назначают при аменорее, при бесплодии, связанном с нарушением функции желтого тела, привычном и угрожающем выкидыше, при овуляторном маточном кровотечении.

ПРЕГНИН

Praegninum

Прегнен-4-ин-20-ол-17β-он-3; 17а-этинилтестостерон

Получение

Прегнин получают из 3-ацетата дегидроэпиандростерона-17 по следующией схеме:

$$H_3C$$
 CH_3
 CH_3

Физические свойства

Белый или белый с желтоватым оттенком кристаллический порошок без запаха. Температура плавления 270-276°C. Удельное вращение от +28 до +32° (0,5% раствор в смеси равных объемов 95%-ного спирта и хлороформа).

Практически нерастворим в воде, очень мало растворим в 95% спирте и эфире, мало растворим в хлороформе.

Подлинность

Инструментальные методы

- **1.** *ИК-спектроскопия.* ИК-спектр, снятый в вазелиновом масле в области $3700{\text{-}}400~\text{см}^{-1}$ должен полностью совпадать с прилагаемым к ΦC рисунком спектра.
- **2.** *УФ-спектрофотометрия* основанна на измерении оптической плотности при 240 нм (максимум светопоглощения).
- **3. Поляриметрия.** Определяют удельное вращение, которое должно быть от +28 до $+32^{\circ}$ (0,5% раствор в смеси равных объемов 95%-ного спирта и хлороформа).

Химические методы

- 1. Взаимодействие с концентрированной серной кислотой (на стероидный цикл). Препарат растворяют в концентрированной серной кислоте, прибавляют воды, встряхивают; появляется малиновое окрашивание с зеленой флуоресценцией. При добавлении хлороформа нижний слой окрашивается в оранжевый цвет, верхний почти бесцветный.
- **2. Реакция на карбонильную группу в 3-м положении.** Образование оксима. С гидрохлоридом гидроксиламина в присутствии ацетата натрия в среде метилового спирта образует оксим, который, после перекристаллизации из 70%-ного метилового спирта, плавится при 226—232°.

$$\begin{array}{c} \text{CH}_3 \quad \text{OH} \\ \text{CH}_4 \quad \text{OH} \\ \text{CH}_4 \quad \text{OH} \\ \text{CH}_5 \quad \text{OH} \\ \text{CH}$$

3. *Реакцияна этинильную группу в 17 положении*. При взаимодействии с нитратом серебра образуется белый осадок ацетиленида серебра.

$$CH_3$$
 OH $C\equiv CH$ $AgNO_3$ CH_3 OH $C\equiv CAg$

Доброкачественность

Чистоту препарата определяют по отсутствию примесей (сульфатная зола не должна превышать 0.1%, а потеря в весе при высушивании до постоянного веса при 100° —0.5%).

Примеси также определяются методами ТСХ и ВЭЖХ.

Количественное определение

Спектрофотометрия. Прегнин в порошке и таблетка определяют спектрофотометрически при длине волны 241 нм (по отношению у 0,001% раствору стандартного образца прегнина).

Содержание прегнина в процентах (X) вычисляют по формуле:

$$X = \frac{D_1 \cdot C_0 \cdot 100}{D_0 \cdot C_1}$$
,

Где:

 D_1 -оптическая плотность испытуемого раствора;

 D_0 - оптическая плотность раствора стандартного образца;

 C_1 - концентрация испытуемого раствора;

С_о - концентрация раствора стандартного образца.

Хранение

Хранят с предосторожностью, в хорошо закупоренных банках, в сухом месте, защищенном от действия света. Форма выпуска: таблетки по 0,005—0,01.

Применение

Прегнин в 5—6 раз менее эффективен, чем прогестерон, но его удобнее вводить в организм. Применяют прегнин внутрь. Показания: ановуляторный менструальный цикл, вторичная аменорея, метроррагия, дисменорея, самопроизвольный выкидыш, угрожающий выкидыш.

ЭСТРОГЕНЫ

Эстрогенные или женские половые гормоны выделяются яичниками. Они обеспечивают развитие женских половых органов, вызывают периодическое наступление овуляции, разрастание слизистой оболочки матки, подготовку ее к воспринятию яйца и развитию плода. Эстрогенные гормоны вызывают также развитие вторичных женских половых признаков. По международному соглашению 1939 г. для стандартизации женских гормонов используется кристаллический препарат, под названием эстрон, 0,1у которого представляет собой 1 международную единицу (1 МЕ) эстрогенной активности.

В основе эстрогенов лежит углеводород эстран:

Эстран

Известны три природных эстрогенных гормона: эстрон (фолликулин), эстрадиол и эстриол:

Эстрогенные гормоны содержатся (в виде эфиров) в цветках и плодах высших растений (ивы, пшеницы), в моче беременных женщин, в моче жеребцов и беременных кобыл. Содержание эстрона в моче жеребцов и беременных кобыл 10–25 мг в 1 л. Это позволяет использовать мочу в качестве источника получения эстрогенных гормонов. Эфиры эстрогенов, содержащиеся в моче, гидролизуют хлороводородной кислотой, а затем свободные эстрогены извлекают органическими растворителями. При дальнейшей очистке используют способность эстрогенов растворяться в щелочах с образованием фенолятов (феноксидов).

В течение длительного времени в медицине использовался естественный гормон эстрон (фолликулин) в виде масляных растворов. Эстрадиол обладает вдвое большей активностью, но из-за быстрой инактивации он не применялся. Впоследствии было показано, что эфиры эстрадиола — более устойчивые вещества, чем эстрон. Кроме того, они обладают пролонгированным действием.

Из полусинтетических аналогов эстрадиола в качестве лекарственных веществ применяют <u>этинилэстрадиол</u>, <u>местранол</u> и <u>эстрадиола дипропионат</u>. Этинилэстрадиол и местранол характеризуются наличием в молекуле этинильного (как у прегнина) радикала в положении 17, что привело к повышению в несколько раз эстрогенной активности по сравнению с эстроном и сохранению ее при пероральном применении.

ЭСТРОН

Estronum

3-Гидроксиэстра-1,3,5(10)триен-17-он

Получение

Синтез эстрона был осуществлен В.Джонсоном. предложенный им метод наиболее прост и стереоспецифичен:

$$H_3C$$
 H_3C
 H_3C

Для медицинских целей эстрон (фолликулин) получают из мочи беременных женщин или беременных животных. Во время беременности выработка фолликулярного гормона значительно увеличивается и большие количества его выделяются с мочой.

Физические свойства

Мелкие кристаллы белого цвета или белый с кремовым оттенком кристаллический порошок. Практически нерастворим в воде, растворим в спирте, эфире, ацетоне, диоксане, маслах растительного происхождения.

Подлинность

Инструментальные методы

- **1.** *ИК-спектрометрия.* ИК-спектр, снятый в вазелиновом масле в области от 4000 до 200 см $^{-1}$, не должен отличаться от рисунка спектра, прилагаемого к Φ С.
- 2. УФ-спектрометрия.
- 3. Хроматографические методы (ВЭЖХ и ТСХ).
- 4. Масс-спектрометрия.

Химические методы

- **1. Реакция на стероидный цикл с концентрированной серной кислотой.** Препарат приобретает соломенно-желтую окраску, переходящую в оранжевую и красно-бурую.
- 2. Реакции фенольный гидроксил.
- <u>образование азокрасителя.</u> При сочетании эстрона с солью диазония в щелочной стреде постепенно возникает бледно-желтое окрашивание.

- *Солеобразование*. При взаимодействии с хлоридом железа (III) появляется синее окрашивание.

3. Реакции на кетогруппу в 17 положении. Препарат растворяют в гидроксиде натрия и добавляют 2%-го спиртового раствора мдинитробензола. Через 5-8 мин развивается красное окрашивание.

Доброкачественность

Методом ТСХ определяют содержание примесей других стероидов.

Колличественное определение

1. Фотоколориметрия. Методика основана на реакции образования азокрасителя.

2. ВЭЖХ

Хранение

Хранят с осторожностью в хорошо укупоренной таре, в сухом, защищенном от света месте. Форма выпоуска: масляный раствор в ампулах по 1 мл (5000 ЕД) в упаковке по 6 штук; по 1 мл (10 000 ЕД) в упаковке по 3 штуки.

Применение

Состояния, обусловленные функцией недостаточной яичников: первичная и вторичная аменорея, гипоплазия половых органов недостаточное развитие вторичных половых признаков, климактерические и посткастрационные расстройства, бесплодие, обусловленное снижением эстрогенной функции яичников, слабость родовой деятельности, переношенная беременность.

ЭСТРАДИОЛА ДИПРОПИОНАТ

Estradiol Dipropionate

$$\begin{array}{c|c} CH_3 & O & C_2H_5 \\ \hline O & O & O \end{array}$$

эстратриен-1,3,5(10)-диола-3,17β дипропионат

Получение

Синтез эстрадиола и эстрадиола дипропионата осуществляют из эстрона путем гидрирования 17 кето-группы до эстрадиола с последующим ацилированием 3- и 17β-оксигрупп:

эстрадиола дипропионат

Физические свойства

Белый кристаллический порошок без запаха. Т. пл. 104-108°C. Удельное вращение от +37 до +41° (1%-ный раствор в диоксане). Не растворим в воде, растворяется в спирте, эфире, растительных маслах.

Подлинность

Инструментальные методы

- **1.** *ИК-спектрометрия.* ИК-спектр, снятый в вазелиновом масле в области от 4000 до 200 см $^{-1}$, не должен отличаться от рисунка спектра, прилагаемого к Φ С.
- **2.** *УФ-спектрометрия*. Эстрадиола дипропионат идентифицируют по УФ-спектру 0,01%-ного раствора в этаноле, который в области 220-350 нм должен иметь два максимума поглощения (при 269 и 276 нм).
- 3. Хроматографические методы (ВЭЖХ и ТСХ).
- 4. Масс-спектрометрия.

Химические методы

- 1. Реакция на стероидный цикл с концентрированной серной кислотой. При добавлении к препарату колнцентрированной серной кислоты при нагревании появляется бурое окрашивание с характерной зеленоватой флуоресценцией. Если данную смесь разбавить водой появляется розовое окрашивание.
- 2. Реакция на остаток пропионовой кислоты. Эстрадиола дипропионат под действием концентрированной серной кислоты гидролизуется с образованием эстрадиола и пропионовой кислоты. Последующее нагревание в присутствии этанола ведет к образованию этилового эфира пропионовой кислоты, имеющего характерный запах:

$$C_2H_5COOH + C_2H_5OH \longrightarrow H_5C_2-C_-OC_2H_5 + H_2O$$

3. *Обнаружение эстрадиола.* После щелочного гидролиза (с последующей очисткой его от примесей) эстрадиола дипропионат идентифицируют по образованию эстрадиола, температура плавления которого 173–179°C.

Доброкачественность

Примеси посторонних стероидов определяют методом ТСХ на пластинках Силуфол УФ-254. В качестве свидетелей используют СОВС эстрона, эстрадиола и др. ФС допускает суммарное содержание примесей стероидов — не более 2%. Так же для определения примесей могут применяться методы ВЭЖХ и масс-спектрометрии.

Количественное определение

1. Нейтрализация. Для количественного определения эстрадиола дипропионата используют реакцию щелочного гидролиза точно отмеренным количеством 0,1 М спиртового раствора гидроксида калия, избыток которого титруют 0,1 М раствором хлороводородной кислоты (индикатор фенолфталеин):

$$CH_3$$
 ОН C_2H_5 ОН $C_2H_$

$$KOH + HCI \longrightarrow KCI + H_2O$$

- 2. ВЭЖХ
- 3. Масс-спектрометрия

Хранение

Эстрадиола дипропионат хранят с осторожностью в хорошо укупоренной таре, в сухом, защищенном от света месте. Форма выпуска: в ампулах по 1 мл 0,1% масляного раствора в упаковке по 3 штуки.

Применение

- заболевания, сопровождающиеся недостаточной функцией яичников
- при недоразвитии или увядании яичников и молочных желез

- отсутствии или нарушениях менструаций
- болезненных состояниях, связанных с климаксом или кастрацией
- при бесплодии
- для стимулирования родовой деятельности
- для вызывания родов при переношенной беременности.
- заболевания кожи: угри, гипертрихоз и др.