

Карбоновые кислоты.

Строение карбоновых кислот

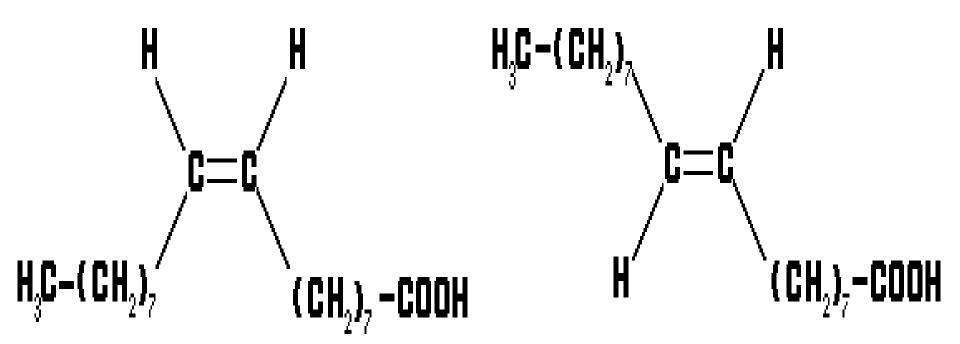
Классификация карбоновых кислот

- По характеру углеводородного радикала различают кислоты:
- предельные (например, CH₃CH₂COOH);
- непредельные (CH₂=CHCH₂COOH);
- и ароматические (RC₆H₄COOH).

- По количеству карбоксильных групп:
- дикарбоновые (например, НООС-СООН – щавелевая кислота)
- Трикарбоновые (например,

лимонная кислота)

$$\begin{array}{c} \text{OH} \\ \text{HOOC-CH}_2\text{-C-CH}_2\text{-COOH} \\ \text{HOOC} \end{array}$$


Номенклатура карбоновых кислот

Формула	Название	
	систематическое	тривиальное
НСООН	метановая	муравьиная
CH ₃ COOH	этановая	уксусная
C ₂ H ₅ COOH	пропановая	пропионовая
C ₃ H ₇ COOH	бутановая	масляная
C ₄ H ₉ COOH	пентановая	валерьяновая
C ₅ H ₁₁ COOH	гексановая	капроновая
C ₁₅ H ₃₁ COOH	пентадекановая	пальмитиновая
C ₁₇ H ₃₅ COOH	гептадекановая	стеариновая

Изомерия карбоновых кислот

- Структурная изомерия:
 изомерия скелета в углеводородном радикале (начиная с С₄).
 межклассовая изомерия, начиная с С₂.
 Например, формуле С₂H₄O₂ соответствуют 3 изомера, относящиеся к различным классам органических соединений.
- Пространственная изомерия Возможна *цис-транс* изомерия в случае непредельных карбоновых кислот. Например:

Изомерия карбоновых кислот

цис- ОЛЕИНОВАЯ КИСЛОТА

транс-ОЛЕИНОВАЯ КИСЛОТА

растворимость

С увеличением молекулярной массы растворимость кислот в воде уменьшается.

Способы получения

Окисление

1. предельных и непредельных углеводородов

$$\begin{array}{c} \text{CH}_3-(\text{CH}_2)_x-\text{CH}_3 \xrightarrow{\circ} \text{CH}_3-(\text{CH}_2)_n-\text{C} & +\text{CH}_3-(\text{CH}_2)_y-\text{C} \\ \text{ нагрев.} & \text{OH} & \text{OH} \\ & \text{кислоты} \end{array}$$

$4O$
 $\text{CH}_3 - \text{CH} = \text{CH} - \text{CH}_2 - \text{CH}_3 \longrightarrow \text{CH}_3 - \text{COOH} + \text{HOOC} - \text{CH}_2 - \text{CH}_3$

2. первичных спиртов и альдегидов

$$R-CH_2-OH \xrightarrow{\bullet} R-C \xrightarrow{\circ} R-C \xrightarrow{\circ} OH$$

Гидролиз тригалогенопроизводных

Гидролиз нитрилов

$$CH_3 - CH_2[Cl + K] - C \equiv N \longrightarrow CH_3 - CH_2 - C \equiv N + KCl$$
 хлористый этил цианид калия нитрил пропионовой

кислоты

$$CH_3 - CH_2 - C \equiv N + 2HOH \longrightarrow CH_3 - CH_2 - C$$
 аммониевая соль ONH4 произионовой кислоты

Взаимодействие реактива Гриньяра с СО2

$$\label{eq:h2O} \begin{array}{l} \text{H}_2\text{O} \\ \text{R} - \text{MgBr} + \text{CO}_2 \rightarrow \text{R} - \text{COO} - \text{MgBr} \rightarrow \text{R} - \text{COOH} + \text{Mg(OH)Br} \end{array}$$

Для отдельных кислот существуют специфические способы получения:


 $5C_6H_5-CH_3 + 6KMnO_4 + 9H_2SO_4 \rightarrow 5C_6H_5-COOH + K_2SO_4 + 6MnSO_4 + 14H_2O$

Гидролиз функциональных производных (сложных эфиров, ангидридов, галогенангидридов, амидов).

$$(RCO)_2O + H_2O \rightarrow 2 R-COOH$$

Химические свойства

- -Замещение водорода группы СООН под действием оснований (*кислотные свойства*).
- -Взаимодействие с нуклеофильными реагентами по карбонильному атому углерода (образование функциональных производных и восстановление)
- -Реакции по а-углеродному атому (*галогенирование*)
- -Декабоксилирование

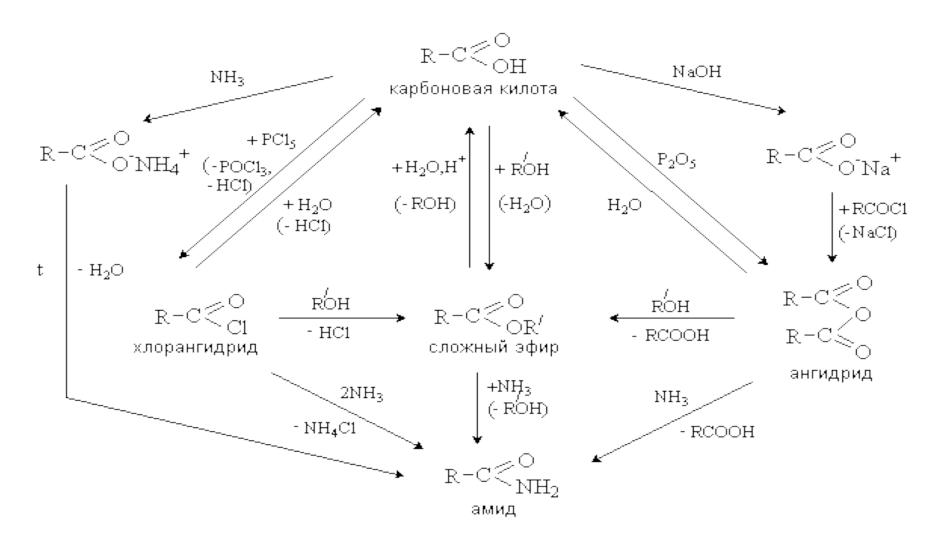


Кислотные свойства

 $pK_a=4-5$

• Карбоновые кислоты – одни из самых сильных органических кислот. Их водные растворы имеют кислую реакцию.

• RCOOH + $H_2O = RCOO^- + H_3O^+$


$$\left[R-C \Big<_{O^{-}}^{O} \longleftrightarrow R-C \Big<_{O^{-}}^{O^{-}}\right]$$
 или $R-C \Big<_{O^{-1/2}}^{O^{-1/2}} 0.127$ нм

Электроноакцепторные заместители оттягивают электронную плотность на себя, способствуя повышению частичного положительного заряда на атоме углерода, и усиливают кислотные свойства карбоновых кислот.

Электронодонорные заместители – ослабляют кислотные свойства карбоновых кислот, т.к. снижают заряд на карбоксильном атоме углерода.

CH₂CI - COOH > CH₃ - COOH > CH₃ - CH₂ - COOH

Реакции нуклеофильного замещения. Функциональные производные карбоновых кислот.

Ацилирующая способность производных карбоновых кислот

$$R-C < 0 < R-C < 0 < R-C$$

Механизм реакции этерификации

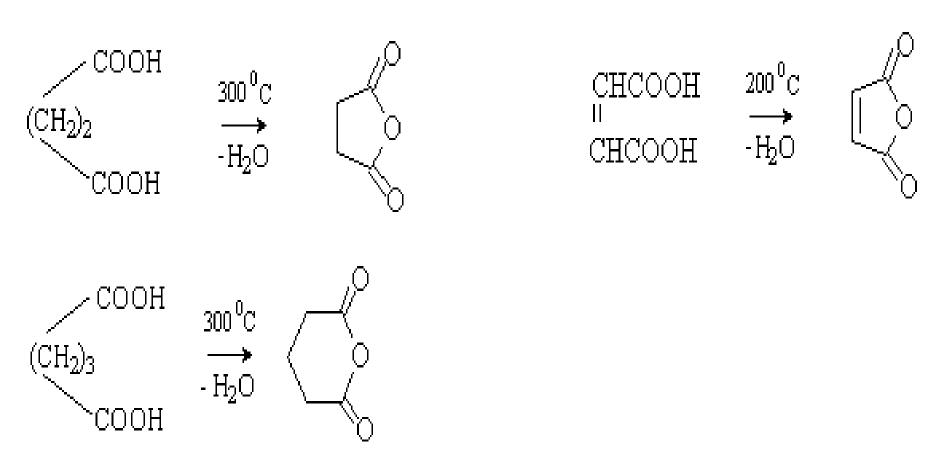
$$R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left[R - C \stackrel{\circ}{\bigcirc} : H + H^{+} \Longrightarrow \left$$

Реакции по а -углеродному атому

$$\begin{array}{c} & \mathbb{P} \\ \mathrm{RCH_2COOH} + \mathbb{Br}_2 \longrightarrow \mathrm{RCHBrCOOH} + \mathrm{HBr} \end{array}$$

RCHCOOH
$$\stackrel{1)\text{N}_{4}\text{OH}}{\longleftarrow}$$
 RCHCOOH $\stackrel{\text{NH}_3}{\longleftarrow}$ RCHCOOH OH OH OH $\stackrel{1)\text{N}_{4}\text{OH}}{\longleftarrow}$ RCHCOOH $\stackrel{\text{N}_{4}\text{OH}}{\longleftarrow}$ RCHCOOH $\stackrel{\text{N}_{5}\text{OH}}{\longleftarrow}$ RCHCOOH $\stackrel{\text{N}_{6}\text{OH}}{\longleftarrow}$ RCHCOOH COOH

Дикарбоновые кислоты


Формула	Название
HOOC-COOH	Щавелевая (этандиовая)
HOOCCH ₂ COOH	Малоновая (1,3-пропандиовая)
HOOC(CH ₂) ₂ COOH	Янтарная (1,4-бутандиовая)
HOOC(CH ₂) ₃ COOH	Глутаровая (1,5-пентандиовая)
HOOC(CH ₂) ₄ COOH	Адипиновая
$_{ m H}^{ m HOOC}$ $_{ m C}$ $_{ m COOH}$	Фумаровая (транс-1,4-бутендиовая)
C = C	Малеиновая (цис-1,4-бутендиовая)

Специфические реакции дикарбоновых кислот

• Декарбоксилирование

$$\begin{array}{c} \text{H}_{2}\text{SO}_{4}, t \\ \text{HOOCCOOH} \xrightarrow{} \text{CO}_{2} + \text{CO} + \text{H}_{2}\text{O} \\ \\ \text{160-180 C} \\ \text{HOOCCH}_{2}\text{COOH} \xrightarrow{} \text{CH}_{3}\text{COOH} + \text{CO}_{2} \end{array}$$

Янтарная, глутаровая и малеиновая кислоты при нагревании легко отщепляют воду с образованием пяти- и шестичленных циклических ангидридов.

Биологически важные дикарбоновые кислоты.

- **Щавелевая кислота** образует малорастворимые соли, например, оксалат кальция, которые отлагаются в виде камней в почках и мочевом пузыре.
- *Янтарная кислота* участвует в обменных процессах, протекающих в организме. Является промежуточным соединением в цикле трикарбоновых кислот.
- *Фумаровая кислота*, в отличие от малеиновой, широко распространена в природе, участвует в процессе обмена веществ, в частности в цикле трикарбоновых кислот.