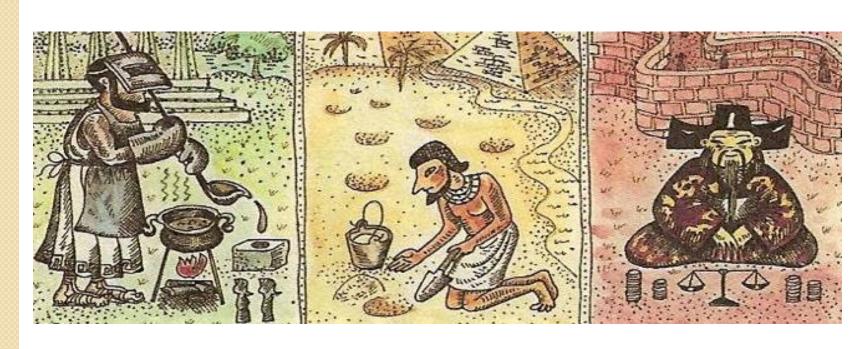
Аналитическая химия. Химический анализ.


Аналитическая химия

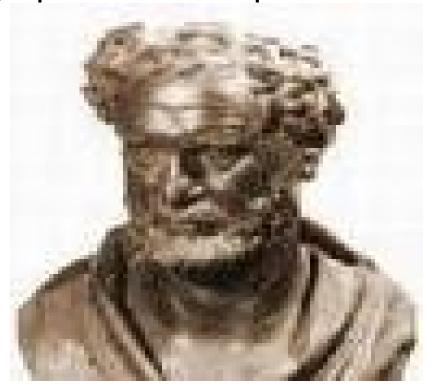
• наука, развивающая теоретические основы анализа химического состава веществ, разрабатывающая методы идентификации и обнаружения, определения и разделения химических элементов, их соединений, а также методы установления химического строения соединений.

История открытия

• Химия в древности

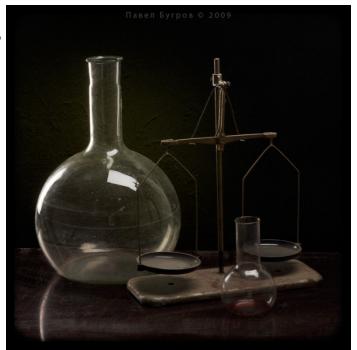
Химическое производство существовало уже за 3 – 4 тысячи лет до н. э.

Египет


В Древнем Египте умели выплавлять из руд металлы, получать их сплавы, производили стекло, керамику, пигменты, краски, духи, делали вино.

Египетские жрецы владели приёмами бальзамирования тел умерших фараонов и знати.

Греческий философ Демокрит (V в. до п.э.)


Все тела состоят из мельчайших, невидимых, неделимых и вечно движущихся частиц- ATOMOB.

Алхимический период (с III в н.э.)

- В поисках философского камня, который якобы превращает металлы в золото зародилась экспериментальная химия;
- углубились и расширились знания о

веществах и химических процессах.

Парацельс

- ПАРАЦЕЛЬС (1493-1541),
- врач и естествоиспытатель,
- один из основателей «отец» ятрохимии – науки о лекарствах.
- Способствовал внедрению химических препаратов в медицину.

Роберт Бойль (1627-1691 гг.)

- Основатель аналитической химии;
- Сторонник атомизма;
- Главная задача химии
 в изучении состава веществ
 и зависимости свойств
 веществ от его состава.

• Приготовил первый индикатор – реактив, изменяющий свою окраску в присутствии кислот

Конец XVIII века Антуан Лоран Лавуазье(1743-1794 гг.)

• предположил, что атмосферный воздух имеет

сложный состав.

 Сформулировал основы кислородной теории горения.

- Выявил суть процессов дыхания.
- Предложил новую номенклатуру химических соединений.

Конец XVIII века Михаил Васильевич Ломоносов (1711-1765 гг.)

- Применял точные измерения при изучении химических реакций.
- Сформулировал закон сохранения массы веществ в химических реакциях

Д. И. Менделеев (1834-1907)

В 1869 г. открыл основополагающий закон химии – Периолический закон.

ПЕРИОДЫ	ропы ГРУППЫ ЭЛЕМЕНТОВ							MY				
HEPROMO	РАДО		II	Ш	IV	V	VI	VII	lu.	-	VIII	
I	1	H						(H)			-	Fle
II	2	Li	Be	E	C	И	0	Ŀ				THE
III	3	Na	Mg	Al	Si	P	3	CI			0	PLY.
17.7	4	K	Ca	Sc	Tí	V	Cr	Mn	Fe	Co	Ni	
IV	5	Cu	Zu	CHI	Gis	Ass	Se	Br				Kr
V	6	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	
	7	Ag	Cd	In	Sn	35	Te	1		-		Xe
7.77	8	Cs	Ba	La	<u>1866</u>	Ta	W	Re	Os	Ţ.	Pt	
VI	9	Au	Hg	11	Pb	Bi	Po	All		10	10	En
VII	10	Fir	Ra	A¢"	Ku	Db	Sg	Bh	Hs	Mt		
BUCHHE		R ₂ O	RO	R,O,	RO,	R,O,	RO,	R,0,	RO,			
BOROPORHIE					RH,	RH3	H ₂ R	HR				0
* ЛАНТАНОИДЫ												
Ce I	r I	Nd P	m Sm	Eu	Gd	Tb D	у Но	Er	Tm	Yb I	-11	2
** АКТИНОИДЫ												
Th P	a	UN	p Pu	Am	Cm	Bk C	f Es	Fim	Md	No I	т	Resides

• Предмет аналитической химии разработка методов анализа и их практическое выполнение, а также широкое исследование теоретических основ аналитических методов (изучение форм существования элементов и их соединений в различных средах и агрегатных состояниях, электрохимических и других характеристик вещества, исследование скоростей химических реакций, определение метрологических характеристик методов и т. д.)

Задачи аналитической химии

- Установление химического состава анализируемого объекта
- Определение структуры соединения, то есть установление взаимного расположения и связей элементарных составных частей в молекулах (структурный анализ)
- Обнаружение неоднородностей на поверхности или в объеме твердых тел, распределение элементов в поверхностных слоях осуществляют методом локальнораспределительного анализа
- Исследование процессов во времени в ходе производственного процесса

Основные понятия аналитической химии

- <u>Принцип анализа</u> определяется явлениями природы, лежащими в основе химического или физического процесса.
- Метод анализа принципы, положенные в основу анализа вещества, то есть вид и природу энергии, вызывающей возмущение химических частиц вещества.
- **Аналитический сигнал** это фиксируемое и измеряемое свойство объекта.
- <u>Проба</u> части вещества из разных зон исследуемого материала.

Основные разделы аналитической химии:

- Качественный анализ:
 дробный и систематический методы
- Количественный анализ:
- 1. химические методы
- 2. инструментальные методы:
- Физические методы анализа
- > Физико-химические методы анализа

Качественный анализ

 заключается в идентификации анализируемого вещества и обнаружение отдельных его элементов (или ионов).

Выделяют:

- анализ катионов
- анализ анионов
- анализ сложных смесей.

Дробный анализ

Метод основан на открытии ионов специфическими реакциями, проводимыми в отдельных порциях исследуемого раствора. Дает возможность обнаруживать ионы в отдельных порциях в любой последовательности

Пример:

Ион Fe $^{2+}$ можно открыть при помощи реактива $K_3[Fe(CN)_6]$ в присутствии любых ионов.

Систематический анализ

- определенная последовательность обнаружения ионов — после того, как мешающие обнаружению ионы удалены или замаскированы.

Проводится с помощью групповых реагентов, позволяющих отделять целые группы веществ с последующим определением после разделения исследуемых ионов.

Химические реакции, пригодные для качественного анализа, должны сопровождаться заметным внешним эффектом (аналитическим эффектом):

• выделение газа

$$CaCO_3 + 2HCI \rightarrow CaCl_2 + CO_2 \uparrow + H_2O$$

• изменение окраски раствора

$$FeCl_3 + 3NH_4SCN \rightarrow Fe(SCN)_3 + 3NH_4Cl$$

окраска окраска

желтая темно-красная

• выпадение или растворение осадка $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 \downarrow + 2HCl$ белый $CaCO_3 \downarrow + 2HCl \rightarrow CaCl_2 + CO_2 \uparrow + H_2O$ белый раствор

• образование кристаллов характерной формы. Na $^+$ + [Sв (OH) $_6$] $^-$ = Na [Sв (OH) $_6$] белые кристаллы

- Аналитические реакции подразделяют на специфические и избирательные (селективные) реакции.
- Специфическими называют те методы, реакции или реагенты, с помощью которых в данных условиях можно обнаружить только одно вещество.

4Fe³⁺ +3[Fe(CN)₆]⁴⁻ → Fe₄ [Fe(CN)₆]₃↓ образование темно-синего осадка «берлинской лазури»

 Избирательные — методы, реакции и реагенты, позволяющие обнаружить небольшое число веществ.

Избирательныйреагент (селективный) — реагент, который реагирует с ограниченным числом ионов.

$$extbf{Ca}^{2+} + extbf{C}_2 extbf{O}_4^{2-} o extbf{CaC}_2 extbf{O}_4 \downarrow$$
 белый $extbf{Mg}^{2+} + extbf{C}_2 extbf{O}_4^{2-} o extbf{MgC}_2 extbf{O}_4 \downarrow$ белый $extbf{Sr}^{2+} + extbf{C}_2 extbf{O}_4^{2-} o extbf{SrC}_2 extbf{O}_4 \downarrow$ белый

Гр у п п о в о й р е а г е н т— реагент на группу ионов с образованием одного и того же аналитического сигнала (чаще всего осадка).

Чувствительность аналитической реакции определяет возможность обнаружения вещества (ионов, молекул) в растворе.

Предельное разбавление V_{lim} — максимальный объём раствора, в котором может быть обнаружен <u>один</u>грамм данного вещества при помощи данной аналитической реакции.

Предельное разбавление выражается в мл/г.

Предельная концентрация с_{lim}(c_{min}) - это наименьшая концентрация, при которой определяемое вещество может быть обнаружено в растворе данной аналитической реакцией. Выражается в г/мл.

Предельная концентрация и предельное разбавление связаны соотношением:

$$c_{lim} = {}^{1}/_{Vlim}$$

Минимальный объём предельно разбавленного р-ра V_{min} — это наименьший объём анализируемого раствора, необходимый для обнаружения открываемого вещества данной аналитической реакцией (выражается в мл.).

Предел обнаружения (открываемый минимум) т (в мкг) — это наименьшая масса определяемого вещества, однозначно открываемого данной аналитической реакцией в минимальном объёме предельно разбавленного раствора (1мкг = 10⁻⁶ г).

 $m = c_{lim} \cdot V_{min} \cdot 10^6 = V_{min} \cdot 10^6/_{Vlim}$

Количественный анализ

- заключается в определении количественного содержания отдельных составных частей анализируемого вещества.
- Гравиметрический (Весовой) анализ метод анализа основан на выделении определяемого вещества в чистом виде и его взвешивании.
- Титриметрический (Объемный) анализ методы основаны на измерении объема жидкого реагента, израсходованного на взаимодействие с определяемым веществом.

По количеству исследуемой пробы методы делят на:

- макроанализ (1–10 г вещества или 20– 100 мл раствора)
- полумикроанализ (0,05–0,5 г вещества или 1,0 10,0 мл раствора)
- микроанализ $(10^{-3}-10^{-6})$ г вещества или $10^{-1}-10^{-4}$ мл раствора)
- **ультрамикроанализ** (10⁻⁶ 10⁻⁹ г вещества или 10⁻⁴—10⁻⁶ мл раствора)
- **субмикроанализ** (10⁻⁹–10⁻¹² г вещества или 10⁻⁷–10⁻¹⁰ мл раствора)

Основные типы химических реакций, которые применяются в аналитической химии:

• Протолитические

$$CH_3COOH + H_2O = CH_3COO^- + H_3O^+$$

кислота1

основание2

основание1

кислота2

• Осаждения

• Комплексобразования

$$AI(OH)_3 + NaOH = Na[AI(OH)_4].$$

тетрагидроксиалюминат (III)

натрия

• Окислительно-восстановительные

FeS + 8HNO₃(конц) = Fe(NO₃)₃ + 5NO
$$\uparrow$$
 + 2H₂SO₄ + 2H₂O,

Аналитические классификации ионов

Сероводородная (сульфидная) классификация катионов

В качестве групповых реагентов используются растворы хлороводородной кислоты, сероводорода, сульфида аммония и карбоната аммония.

Катионы по этой классификации подразделяют на пять аналитических групп, в зависимости от растворимости их хлоридов, сульфидов и карбонатов

Аналитические классификации ионов

2. Кислитно-основная классификация - групповыми реагентами являются растворы кислот и оснований.

Группа	Катионы	Групповой			
		реагент			
I	Na^{\dagger} , K^{\dagger} , NH_4^{\dagger}	Отсутствует			
П	Ca ²⁺ , Sr ²⁺ , Ba ²⁺	Раствор H ₂ SO ₄			
Ш	Ag^{+} , Hg_{2}^{2+} , Pb^{2+}	Раствор НС1			
IV	Zn ²⁺ , Al ³⁺ , Sn ²⁺ , Sn ⁴⁺ , Cr ³⁺ , As ³⁺ ,	Раствор NaOH			
	As ⁵⁺	(KOH) B			
		избытке			
V	Mg ²⁺ , Mn ²⁺ , Fe ²⁺ , Fe ³⁺ , Bi ³⁺ , Sb ³⁺ ,	Раствор NaOH			
	Sb ³⁺	(NH 4OH) B			
		избытке			
VI	Cu ²⁺ , Cd ²⁺ , Hg ²⁺ , Co ²⁺ , Ni ²⁺	Раствор			
		аммиака (25 %)			

Классификация анионов

Группа	Анионы	Групповой реагент
I	SO ₄ ² , SO ₃ ² , S ₂ O ₃ ² , C ₂ O ₄ ² , CO ₃ ² ,	Раствор ВаС1 ₂ в нейтральной или
	B ₄ O ₇ ² , (BO ₂), PO ₄ ³ , AsO ₄ ³ , AsO ₃ ³ , F, SiO ₃ ²	неитральнои или слабощелочной
		среде
П	C1 ', Br ', I ', IO ₃ ', CN ', SCN ', S ² '	Раствор AgNO ₃
		в азотнокислой среде
Ш	NO ₃ °, NO ₂ °, CH ₃ COO ° и др.	Отсутствует

- 3. Аммиачно-фосфатная классификация
 - основана на различной растворимости фосфатов в воде, сильных и слабых кислотах, щелочах, аммиаке.

По этой классификации катионы делят на 5 групп.