Алкины

- это ненасыщенные углеводороды, содержащие в цепи тройную связь.

Общая формула алкинов С_пH_{2n-2}

СН ≡ СН этин, ацетилен

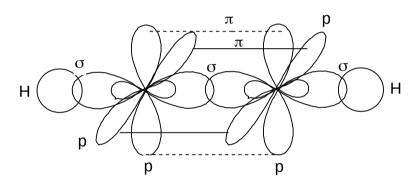
 $CH \equiv C - CH_3$ пропин, метилацетилен

Физические свойства:

Ацетилен – газ, б/ц, б/з, в воде малорастворим, хорошо растворим в ацетоне. Смесь ацетилена с воздухом взрывоопасна

 C_2 – C_4 – газы, б/ц, б/з

 $C_5 - C_{16} - жидкости$


C₁₇ и выше – кристаллические вещества

Ткип., Тпл., р у алкинов выше по сравнению с алканами и алкенами.

Электронное строение

Атомы углерода при тройной связи находятся в sp – гибридизации.

 $H - C \equiv C - H$

Длина тройной связи–0,120нм Энергия связи – 814 кДж/моль

Химические свойства

1.Галогенирование.

$$HC \equiv CH + X_2$$
 $X = CH - CH - X$ $X = CH - CH - X$ $X = CH_2$, Br_2 $X = CH_2$, Br_2 $X = CH_2$ $X = CH$

(реакция с бромом качественная реакция на тройную связь)

2. Гидрогалогенирование: присоединение галогенводородов протекает по правилу Марковникова

$$HC \equiv CH + HCI \longrightarrow CH_2 = CH - CI \xrightarrow{HCI} CH_3 - CH - CI$$

3. Гидратация(реакция Кучерова):

$$HC \equiv CH + H_2O \xrightarrow{HgSO_4, H_2SO_4} CH_2 = CH - OH \longrightarrow CH_3 - C \xrightarrow{H}$$
 ацетальдегид

$$R \longrightarrow C \longrightarrow CH + H_2O \xrightarrow{HgSO_4, H_2SO_4} R \longrightarrow C \longrightarrow CH_2 \longrightarrow R \longrightarrow C \longrightarrow CH_3$$

$$| \qquad \qquad | \qquad \qquad |$$

$$OH \qquad O \quad KETOH$$

4. Реакции винилирования:

$$C_4H_9OH$$
 $CH_2 = CH - OC_4H_9$ бутилвиниловый эфир CH_3COOH $CH_2 = CH - O - C(O)CH_3$ винилацетат $CH = CH$ $CH_2 = CH - CN$ акрилонитрил $CH_3 - NH_2$ $CH_2 = CH - NH - CH_3$ метилвиниламин

5. Карбонилирование:

$$CH = CH + CO + HX \xrightarrow{Ni(CO)_4} CH_2 = CH - C \xrightarrow{N}_X$$

 $X = OH, NH_2$

6.Кислотные свойства (слабые СН – кислотные свойства):

CH≡CH + NaNH₂
$$\xrightarrow{NH_3}$$
 CH≡C - Na + NH₃ ацетиленид натрия

CH≡CH + 2 [Ag(NH₃)₂]OH \longrightarrow Ag - C ≡ C - Ag $\sqrt{}$ + 4 NH₃ + 2 H₂O ацетиленид серебра

CH≡CH + 2 [Cu(NH₃)₂]OH \longrightarrow Cu - C ≡ C - Cu $\sqrt{}$ + 4 NH₃ + 2 H₂O

ацетиленид меди

Взаимодействие ацетиленидов с

галогеналкилами (метод получения гомологов ацетилена):

7.Окисление:

$$CH \equiv C - CH_3 + O_2 \xrightarrow{H_2O} CO_2 + CH_3COOH$$

$$R - C \equiv C - R' \xrightarrow{KMnO_4, H^+} R - COOH + R' - COOH$$

8.Восстановление

$$CH \equiv CH + H_2 \xrightarrow{Pt} CH_2 = CH_2 \xrightarrow{H_2} CH_3 - CH_3$$

9.Полимеризация *а) димеризация*

$$CH \equiv CH + CH \equiv CH \xrightarrow{CuCl} CH \equiv C - CH = CH_2$$
 винилацетилен

б) тримеризация

$$3 \text{ CH} \equiv \text{CH}$$
 $\xrightarrow{\text{CuCl}}$ $\text{CH}_2 = \text{CH} - \text{C} \equiv \text{C} - \text{CH} = \text{CH}_2$ дивинилацетилен $3 \text{ CH} \equiv \text{CH}$ $\xrightarrow{\text{C(akt.)}, 400^{\circ}\text{C}}$ $\xrightarrow{\text{CH}_3}$ $\xrightarrow{\text{CH}_3}$

1,3,5 - триметилбензол