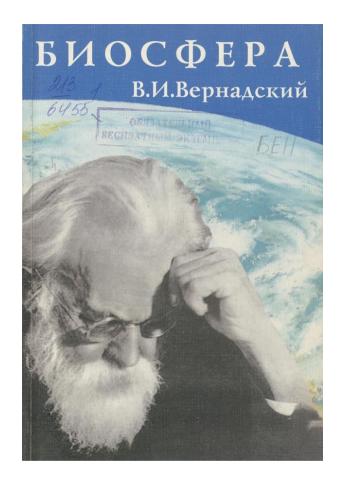


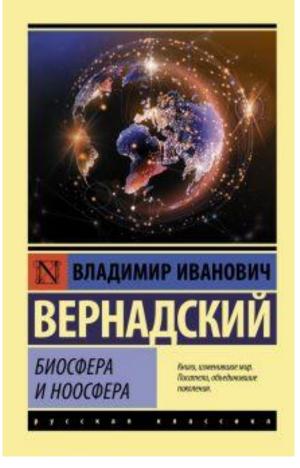
Тема №3. УЧЕНИЕ О БИОСФЕРЕ: БИОСФЕРА КАК ГЛОБАЛЬНАЯ ЭКОСИСТЕМА ЗЕМЛИ

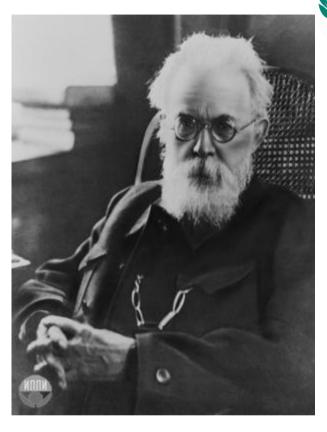
Профессор кафедры общей гигиены и экологии

Ковалева Марина Дмитриевна

Термин «биосфера» появился в научной литературе в 1875 г. и предложил его Эдуард Зюсс (1831–1914) – известный австрийский геолог.


Однако, введя в науку новый термин, Э. Зюсс не дал ему четкого определения.


Обсуждая особенности Земли как планеты, он писал: «Одно кажется чужеродным на этом большом, состоящем из сфер небесном теле, а именно органическая жизнь ... На поверхности материков можно выделить самостоятельную биосферу».



Основоположником учения о биосфере (нового фундаментального научного направления естествознания) в первой трети XX века стал великий русский ученый В.И. Вернадский.

В 1926 г. В. И. Вернадский опубликовал свой классический фундаментальный труд «Биосфера», в котором он развил опыт предшественников и реализовал свои научные идеи.

волгГир

ПО В.И. ВЕРНАДСКОМУ БИОСФЕРА ПРЕДСТАВЛЯЕТ СОБОЙ

одну из геологических оболочек земного шара, глобальную систему Земли, в которой геохимические и энергетические превращения определяются суммарной активностью всех живых организмов — живого вещества.

Т.о., биосфера - это область существования живого вещества.

В СОСТАВ БИОСФЕРЫ (ПО В.И. ВЕРНАДСКОМУ) ВХОДЯТ:

«живое вещество» - совокупность живых организмов;

«биогенное вещество» - органоминеральные и органические продукты, созданные живым веществом (каменный уголь, торф, почвенный гумус и др.);

«биокосное вещество» - вещества, образовавшиеся в результате взаимодействия живых организмов и неживой природы (газы, составляющие нижние слои атмосферы, вода, осадочные породы, алюмокремниевые минералы, карбонаты и др.).

живое вещество

Под живым веществом В.И. Вернадский понимал все количество живых организмов планеты как единое целое.

Возникшее в ходе эволюции чрезвычайное разнообразие живых организмов, образующих сферу жизни является важнейшей особенностью биосферы.

живое вещество

При всем своем многообразии на Земле живое вещество образует ничтожно тонкий слой в общей массе геосфер.

Считается, что его масса составляет 2420 млрд.т, что более чем в две тысячи раз меньше массы самой легкой оболочки Земли - атмосферы. Однако эта масса живого вещества встречается практически повсюду.

«Всюдность» жизни в биосфере обязана потенци-альным возможностям и масштабу приспособляемости организмов, которые постепенно, освоив моря и океаны вышли на сушу и захватили ее. В.И. Вернадский считал, что этот захват не закончен, что он продолжается и, в значительной мере, это возможно благодаря биогенному току атомов.

СОСТАВ БИОСФЕРЫ

Биосфера, как глобальная экосистема (экосфера) состоит из абиотической и биотической части.

СОСТАВ БИОСФЕРЫ

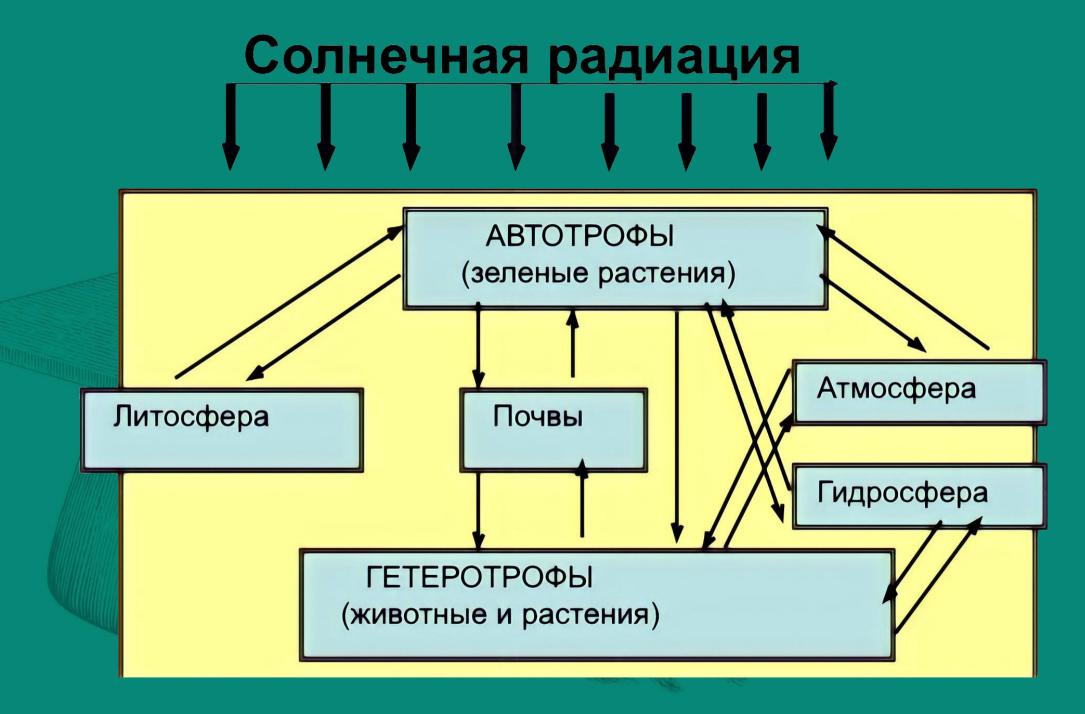
Абиотическая часть представлена:

- 1) почвой и подстилающими ее породами, где в них еще есть живые организмы, вступающие в обмен с веществом этих пород и физической средой порового пространства;
- 2) атмосферным воздухом до высот, на которых еще возможны проявления жизни;
- 3) водной средой океанов, рек, озер и т.п.

Биотическая часть состоит

из живых организмов всех таксонов, осуществляющих важнейшую функцию биосферы: биогенный ток атомов.

БИОГЕННЫЙ ТОК АТОМОВ, ИЛИ БИОГЕННАЯ МИГРАЦИЯ АТОМОВ



Осуществляется живыми организмами благодаря дыханию, питанию и размножению.

Обеспечивает обмен веществом между всеми частями

биосферы.

Взаимосвязи живых организмов с абиотическими компонентами биосферы (по В.И. Коробкину, 2011)

В ОСНОВЕ БИОГЕННОЙ МИГРАЦИИ АТОМОВ ЛЕЖАТ 2 БИОХИМИЧЕСКИХ ПРИНЦИПА:

- стремиться к максимальному проявлению, «всюдности» жизни;
- обеспечить выживание организмов, что увеличивает саму биогенную миграцию.

Эти закономерности проявляются в стремлении живых организмов «захватить» все приспособленные для их жизни пространства, создавая экосистему или ее часть.

ПРЕДЕЛЫ ТОЛЕРАНТНОСТИ ЖИВЫХ ОРГАНИЗМОВ

- толерантность к температурам: от абсолютного нуля до 180^{0} C;
- толерантность к содержанию кислорода: аэробы, анаэробы, существующие в вакууме;
- толерантность к рН: от кислой среды до щелочной;
- толерантность к ионизирующей радиации: бактерии в котлах ядерных реакторов.

С СОВРЕМЕННЫХ НАУЧНЫХ ПОЗИЦИЙ

Биосфера это внешняя оболочка Земли, в состав которой входят нижняя часть атмосферы, практически вся гидросфера и верхняя часть литосферы, населенные живыми организмами.

Эти три составные части биосферы тесно связаны между собой и вместе составляют единую функциональную систему.

ВАЖНЕЙШАЯ ФУНКЦИЯ БИОСФЕРЫ

Это устойчивое поддержание жизни, основанное на непрерывном круговороте веществ, связанном с направленными потоками энергии.

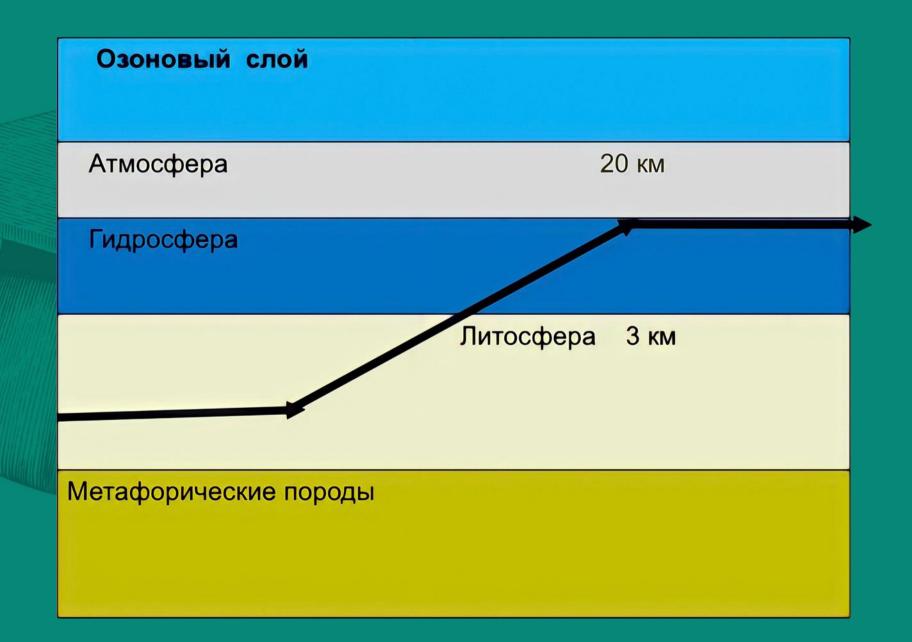
ГРАНИЦЫ БИОСФЕРЫ

Нижняя граница биосферы проходит на глубине 3 км от поверхности суши и 6 км ниже дна океана.

Верхняя граница охватывает всю тропосферу и нижнюю часть стратосферы, достигая около 20 км над

поверхностью Земли.

БИОСФЕРУ ОКРУЖАЮТ


• Сверху - озоновый слой стратосферы.

• Снизу - метаморфические породы и гранитная

оболочка.

ГРАНИЦЫ БИОСФЕРЫ


ЛИТОСФЕРА

- Каменная оболочка (от греч. «литос» – камень, «сфера» – шар)
- Литосфера состоит из горных пород, большинство из которых твёрдые.
- Суша, земля твёрдое состояние вещества.

ЛИТОСФЕРА

ЛИТОСФЕРА (ГРЕЧ. ЛИТОС –КАМЕНЬ)

Каменная оболочка Земли, включающая земную кору мощностью (толщиной) от 6 км под океанами до 80 км (горные системы).

Сложена горными породами, среди которых более 70% магматических пород, 17% метаморфических (преобразованных давлением и температурой) и около 12% осадочных пород.

ЛИТОСФЕРА

Является важнейшим ресурсом для человечества: содержит топливно-энергетическое сырье (уголь, нефть, газ, горючие сланцы), рудные (железо, алюминий, медь, олово и др.) и нерудные (фосфориты, апатиты и др.) полезные ископаемые, естественные строительные материалы (известняки, пески, гравий и др.)

ПОЧВЕННАЯ СРЕДА

На границе биосферной части литосферы и атмосферы располагается граничный слой, представленный почвами.

В почвах наблюдается взаимодействие биотического и абиотических компонентов в рамках почвенных экосистем. Почвы обеспечивают питание биогенными веществами растений, которые, в свою очередь, обеспечивают питанием гетеротрофные организмы.

Таким образом, обеспечение круговорота веществ в биосфере неразрывно связано с почвенными экосистемами.

ПОЧВЕННАЯ СРЕДА

Почва представляет собой сложную трехфазную систему, в которой твердые частицы окружены воздухом и водой.

- > В почве сглажены температурные колебания.
- Грунтовые воды и осадки создают запасы влаги и обеспечивают режим влажности в почве, промежуточный между водной и наземной средами.
- ▶ В почве концентрируется «мертвое» органические и минеральные вещества. Следовательно почва — продукт совместно действия живых организмов и неживых веществ.

ЖИВЫЕ ОРГАНИЗМЫ, ОБИТАЮЩИЕ В ПОЧВЕ (ПО Н.М.ЧЕРНОВОЙ И А.М. БЫЛОВОЙ)

На 1 м2 почвенного слоя в среднем приходится более 100 млрд. клеток простейших, миллионы нематод, десятки и сотни тысяч клещей, тысячи других членистоногих, сотни дождевых червей, моллюсков и других беспозвоночных.

Кроме того, 1 см2 почвы содержит десятки и сотни миллионов бактерий, микроскопических грибов, актиномицетов и других микроорганизмов.

В освещенных поверхностных слоях почвы в каждом грамме обитают сотни тысяч фотосинтезирующих клеток зеленых, желто-зеленых, диатомовых и сине-зеленых водорослей.

ТИПЫ ПОЧВ В ЗАВИСИМОСТИ ОТ ГЕОГРАФИЧЕСКОЙ ЗОНАЛЬНОСТИ

- Арктические и тундровые почвы;
- Подзолистые почвы;
- Черноземы;
- Каштановые почвы;
- Серо-бурые почвы;
- Сероземы;
- Красноземы;
- Желтоземы.

ВРЕМЯ ФОРМИРОВАНИЯ ПОЧВ

Время формирования почв зависит от интенсивности гумификации.

Скорость накопления гумуса в почвах можно определить в единицах, измеряющих мощность (толщину) гумусового слоя по отношению ко времени их формирования, например, в мм/год.

ВРЕМЯ ФОРМИРОВАНИЯ ПОЧВ

Зная скорость накопления гумуса и мощность гумусового горизонта, можно рассчитать возраст различных типов почв.

Например, на Русской равнине черноземы образовались за 2500-3000 лет, подзолистые — 1500 лет, серые и бурые лесные почвы — за 800-1000 лет.

Примечание. На скорость образования почвы также влияет тип материнской породы и климат. Например, на гранитах почвы образуются медленнее, чем на известняках.

СКОРОСТЬ ФОРМИРОВАНИЯ ГУМУСОВОГО ГОРИЗОНТА ПОЧВ РУССКОЙ РАВНИНЫ (ПО А.Н. ГЕННАДИЕВУ И ДР. 1987)

Группы почв	Скорость , мм/в год
Горно-луговые, горные лесо-луговые	0,80 - 1,00
Торфяно-глеевые, болотно-подзолистые	0,50 – 0,80
Дерново-карбонатные, оподзоленные	0,45 – 0,50
Черноземы оподзоленные, типичные	0,40 – 0,45
Серые лесные, черноземы обыкновенные	0,35 – 0,40
Черноземы южные, темно-каштановые, деново- подзолистые	0,20 – 0,30
Подзолы и типичные подзолистые	0,10 - 0,20
Солонцы, светло-каштановые	Менее 0,10

ГЛАВНОЕ НАЗНАЧЕНИЕ ПОЧВЕННОЙ ЭКОСИСТЕМЫ

- обеспечение круговорота веществ в биосфере.

ГИДРОСФЕРА

ГИДРОСФЕРА

Водная оболочка Земли, подразделяется на поверхностную и подземную.

Объем гидросферы не превышает 0,13% объема земного шара. Мировой океан составляет 96,53% от общего объема гидросферы, подземные воды- 1,69% (23,4 млн. км3), остальное воды рек, озер и ледников.

ГИДРОСФЕРА

Гидросфера занимает до 71% площади Земли.

От общего количества водных ресурсов Земли соленые воды составляют 98%, пресные – около 2% (28,25 млн. км3).

На долю пресных вод, пригодных для водоснабжения, приходится 0,3% (4,2 млн. км3), остальная часть пресных вод сосредоточена в ледниках, воды которых пока используются очень мало.

В водной среде обитает около 150 тыс. видов животных и 10 тыс.видов растений.

СПЕЦИФИЧЕСКИЕ СВОЙСТВА ГИДРОСФЕРЫ

- > Большая плотность
- > Сильные перепады давления
- > Относительно малое содержание кислорода
- > Сильное поглощение солнечных лучей и др.

РОЛЬ ГИДРОСФЕРЫ

Гидросфера играет огромную роль в формировании природной среды и климата планеты. Она активно влияет на процессы нагревания и охлаждения воздушных масс, насыщение их влагой и др.

АТМОСФЕРА

Газовая оболочка Земли, состоящая из смеси различных газов, водяных паров и пыли.

В состав атмосферы входят азот, кислород, аргон, неон, гелий, криптон, водород, углекислый газ, метан, озон, окись азота и окись углерода.

Общая масса атмосферы – 5,15*10 15т

На высоте 10-50 км от поверхности Земли расположен слой озона, защищающий ее от чрезмерного ультрафиолетового облучения.

АТМОСФЕРА

Нижний слой атмосферы - **тропосфера**, её размеры: в полярных широтах —8-10 км, в умеренных — 10-12 км, в тропических —16-18 км.

В тропосфере происходят глобальные вертикальные и горизонтальные перемещения воздушных масс, во многом определяющие круговорот воды, теплообмен, трансграничный перенос пылевых частиц и загрязнений.

СПЕЦИФИЧЕСКИЕ ХАРАКТЕРИСТИКИ АТМОСФЕРЫ

- > Низкое содержание влажности, плотности и давления
- > Высокое содержание кислорода

ФУНКЦИОНАЛЬНАЯ ВЗАИМОСВЯЗЬ СОСТАВНЫХ ЧАСТЕЙ БИОСФЕРЫ

Функциональная взаимосвязь составных частей биосферы включает взаимодей-ствие процессов, происходящих в атмосфере, гидросфере и литосфере.

Функциональная взаимосвязь составных частей биосферы превращает биосферу в саморегулирующуюся систему, что обеспечивает устойчивый глобальный круговорот веществ в природе.

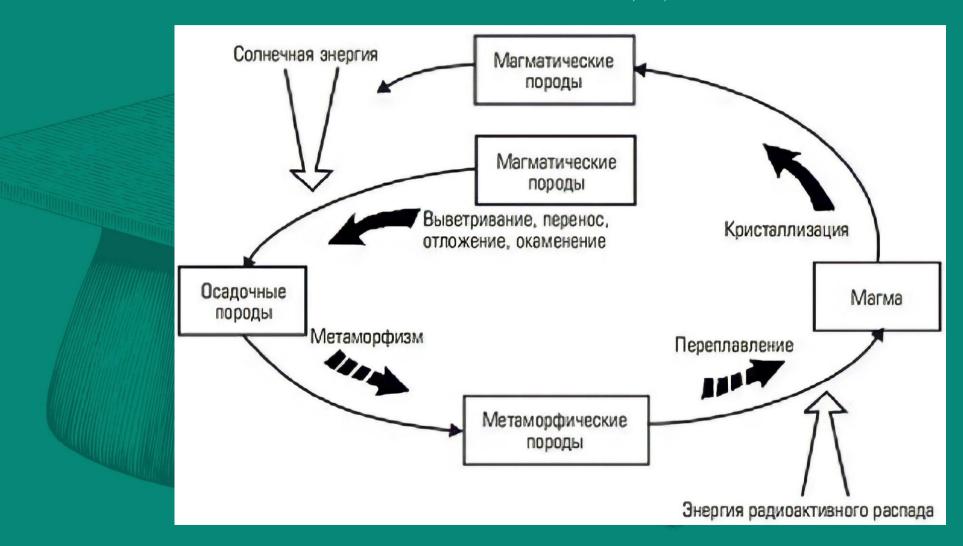
КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ

Основных круговоротов веществ в природе два:

- Большой (геологический);
- Малый (биогеохимический).

БОЛЬШОЙ КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ

- 1)Обусловлен взаимодействием солнечной энергии с глубинной энергией Земли и осуществляет перераспределение вещества между биосферой и более глубокими горизонтами Земли.
- 2)Круговорот воды между сушей и океаном через атмосферу


Символом круговорота веществ является спираль. Это означает, что каждый новый цикл круговорота не повторяет в точности старый, а вносит новшества, что со временем приводит к весьма значительным изменениям.

БОЛЬШОЙ КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ

- круговорот, осуществляемый в системе «магматические породы — осадочные породы — метаморфические породы (преобразованные температурой и давлением) — магматические породы» происходит за счет процессов магматизма, метаморфизма, литогенеза и динамики земной коры.

БОЛЬШОЙ КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ

БОЛЬШОЙ КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ

Осадочные горные породы, образованные за счет выветривания магматических пород, в подвижных зонах земной коры вновь погружаются в зону высоких температур и давлений. Там они переплавляются и образуют магму- источник новых магматических пород. После поднятия этих пород на земную поверхность и под влиянием процессов выветривания вновь происходит трансформация их в осадочные породы.

КРУГОВОРОТ ВОДЫ В ПРИРОДЕ (БОЛЬШОЙ КРУГОВОРОТ)

Это пополнение гидросферы за счет атмосферных осадков

и возврат воды в атмосферу путем испарения с поверхности океана и других водоемов.

Ежегодно на Земле в круговороте участвует более 500 тыс. км3 воды.

На испарение влаги расходуется около 50% падающей на поверхность Земли солнечной энергии.

БОЛЬШОЙ КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ (КРУГОВОРОТ ВОДЫ)

Влага, испарившаяся с поверхности мирового океана, частью переносится на сушу, где выпадает в виде осадков, которые затем вновь возвращаются в океан в виде поверхностного и подземного стока.

Другая часть влаги выпадает на эту же водную поверхность океана в виде осадков, затем испаряется, конденсируется и вновь выпадает в виде осадков на эту же водную поверхность океана.

БОЛЬШОЙ КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ (КРУГОВОРОТ ВОДЫ)

Круговорот воды между сушей и океаном через атмосферу в целом играет основную роль в формировании природных условий на нашей планете.

С учетом транспирации воды растениями и поглощением ее в биогеохимическом цикле весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.

МАЛЬЙ КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ (БИОГЕОХИМИЧЕСКИЙ)

Совершается лишь в пределах биосферы.

Его сущность состоит в образовании живого вещества из неорганических соединений в процессе фотосинтеза и в превращении органического вещества при разложении вновь в неорганические соединения. Этот круговорот является порождением жизни и сам поддерживает жизнь на нашей планете, обеспечивая биогеохимический круговорот веществ.

МАЛЫЙ КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ (БИОГЕОХИМИЧЕСКИЙ) ВКЛЮЧАЕТ:

- энергетические связи (через процессы фотосинтеза и через тепловое излучение);
- химические связи (растворение и др.)

БИОГЕОХИМИЧЕСКИЙ КРУГОВОРОТ

Представляет собой обмен макро- и микроэлементов и простых неорганических веществ (СО2, Н2О) с веществами атмосферы, гидросферы и литосферы.

В БИОГЕОХИМИЧЕСКИХ КРУГОВОРОТАХ ВЫДЕЛЯЮТ 2 ЧАСТИ:

Резервный фонд — это огромная масса движущихся веществ, не связанных с организмами.

Обменный фонд — значительно меньший, но весьма активный, обусловленный прямым обменом биогенным веществом между организмами и их непосредственным окружением.

ОТЛИЧИЯ БИОГЕОХИМИЧЕСКОГО И БИОЛОГИЧЕСКОГО КРУГОВОРОТОВ

В отличие от биогеохимического круговорота, осуществляемого в рамках биосферы, биологический круговорот осуществляется в пределах отдельных экосистем посредством переноса веществ и энергии в трофических цепях. Биологический круговорот предполагает замкнутый цикл превращения веществ, многократно используемый трофической цепью (например, в водных экосистемах и др.).

Следует учитывать, что биологический круговорот в масштабах всей биосферы невозможен.

БИОЛОГИЧЕСКИЙ КРУГОВОРОТ

БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ

Биогеохимические циклы (по В. И. Вернадскому) **это круговороты отдельных веществ.**

Суть цикла состоит в следующем: химические элементы, поглощенные живым организмом, впоследствии его покидают, переходя в абиотическую среду, а затем через какой то интервал времени вновь могут попадать в живой организм и т.д. Такие элементы называются биофильными.

БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ НАИБОЛЕЕ ЖИЗНЕННО ВАЖНЫХ БИОГЕННЫХ ВЕЩЕСТВ

затрагивают такие вещества, которые входят в состав белковых молекул. К ним относятся углерод (С), азот(N), кислород(O2), фосфор (Р) и серу (S).

Большой и малый круговорот веществ в биосфере, а также биологический круговорот и биогеохимические циклы обеспечивают в целом важнейшие функции живого вещества в биосфере. В.И. Вернадский выделяет 5 таких функций:

- 1) газовая;
- 2) концентрационная;
- 3) окислительно-восстановительная;
- 4) биохимическая;
- 5) биогеохимическая деятельность человека.

ФУНКЦИИ ЖИВОГО ВЕЩЕСТВА В БИОСФЕРЕ

- 1. Газовая функция основные газы атмосферы Земли, азот и кислород, биогенного происхождения, как и все подземные газы продукт разложения отмершей органики.
- 2. Концентрационная организмы накапливают в своих телах многие химические элементы, среди которых на первом месте стоит углерод, среди металлов первый кальций, концентра-торами кремния являются диатомовые водоросли, йода водоросли ламинария, фосфора скелеты позвоночных животных.

ФУНКЦИИ ЖИВОГО ВЕЩЕСТВА В БИОСФЕРЕ (ПРОДОЛЖЕНИЕ)

- 3. Окислительно-восстановительная функция организмы, обитающие в водоемах, регулируют кислородный режим и создают условия для растворения или же осаждения ряда металлов (V, Mn, Fe) и неметаллов (S) с переменной валентностью.
- 4. Биохимическая размножение, рост и перемещение в пространстве («расползание») живого вещества.

ФУНКЦИИ ЖИВОГО ВЕЩЕСТВА В БИОСФЕРЕ (ПРОДОЛЖЕНИЕ)

5. Биогеохимическая деятельность человека — охватывает все разрастающееся количество веществ земной коры, в т.ч. таких концентраторов углерода, как уголь, нефть, газ и др. для хозяйственных и бытовых нужд человека.

ОСНОВНАЯ ПЛАНЕТАРНАЯ ФУНКЦИЯ ЖИВОГО ВЕЩЕСТВА В БИОСФЕРЕ - ЭТО СВЯЗЫВАНИЕ И ЗАПАСАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ.

Осуществляется эта функция в одном единственном процессе - в создании органического вещества в результате фотосинтеза.

КАЧЕСТВЕННЫЕ ФОРМЫ ЖИЗНИ НА ЗЕМЛЕ

- Продуценты
- Консументы
- Редуценты

Продуценты — организмы, способные производить органические вещества из неорганических, то есть все автотрофы.

Консументы — это живые организмы земной экосистемы, которые для обеспечения своей жизнедеятельности потребляют уже готовую органическую материю.

Редуценты— организмы (в основном бактерии и грибы), разрушающие отмершие останки живых существ, превращая их в неорганические и простейшие органические соединения. Являются гетеротрофами.

СВОЙСТВА СОСТАВЛЯЮЩИХ БИОСФЕРЫ, ОБУСЛОВЛЕННЫЕ ДЕЯТЕЛЬНОСТЬЮ ЖИВОГО ВЕЩЕСТВА

Составляющие биосферы	Свойства, обусловленные деятельностью живого вещества
Литосфера (почва)	Плодородие, структура
Гидросфера	Химический состав: продукты метаболизма, содержание кислорода, удаление взвешенных частиц (живые фильтры). Формирование рельефа: воздействие крупных животных, отложения органогенных пород (коралловые рифы). Влияние на скорость течения — температурный режим (Саргассово море)
Атмосфера Роздинесьти	Современный газовый состав атмосферы Тепловой баланс (парниковый эффект) Режим влажности (жизнедеятельность растений). Мезо- и микроклимат (влияние растительности на ветровой режим, условия залегания снежного покрова и т.п.)

ОСНОВНЫЕ СВОЙСТВА БИОСФЕРЫ

Биосфера- это система:

- централизованная;
- открытая;
- саморегулирующаяся;
- характеризующаяся большим разнообразием;
- имеющая механизмы, обеспечивающие круговорот веществ.

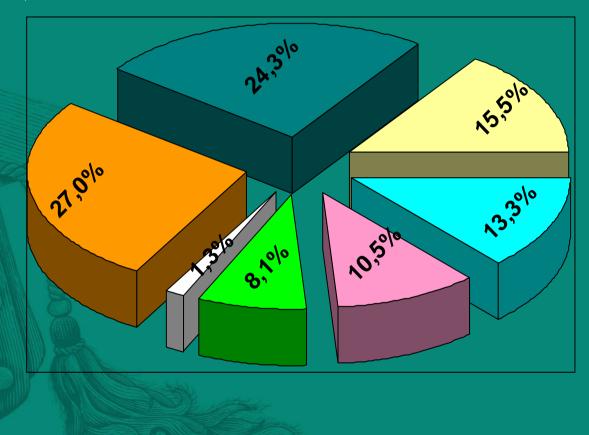
НООСФЕРА – ОСНОВНАЯ КОНЦЕПЦИЯ

Ноосфера - сфера ведущего значения человеческого разума, на базе научных знаний преобразующего биосферу на благо каждого человека.

ОКРУЖАЮЩАЯ СРЕДА (ПРИРОДНАЯ СРЕДА) — среда обитания и производственной (профессиональной) деятельности человека.

ЭКОЛОГИЯ ЧЕЛОВЕКА — это межотраслевая комплексная научная дисциплина, изучающая влияние на человека как особого социально-биологического вида природных и социальных факторов окружающей среды.

АНТРОПОГЕННЫЕ ФАКТОРЫ



совокупность факторов окружающей среды,
 обусловленных случайной или преднамеренной
 деятельностью человечества за период его существования.

ИСТОЧНИКИ ЗАГРЯЗНЕНИЯ АТМОСФЕРНОГО ВОЗДУХА ПРОМЫШЛЕННЫМИ ПРЕДПРИЯТИЯМИ

- Теплоэлектроцентрали
- Чёрная металлургия
- □ Нефтедобыча и нефтехимия
- Автотранспорт
- □ Цветная металлугргия
- □ производство стройматериалов
- □ Химическкая промышленность

ЗАГРЯЗНЕНИЕ АТМОСФЕРНОГО В ВОЗДУХА ГОРОДОВ КАНЦЕРОГЕННЫМИ ВЕЩЕСТВАМИ

Город	Концентрация бензапирена, мг/м3	Автор определения и год обследования
Лос-Анжелос	0,031-0,32	Kotin, Falk 1954г.
Копенгаген	0,054-0,154	По Рязанову В.А. 1961 г.
Лондон	0,14	Hettche 1961 г.
Шеффилд	0,33	Hettche 1961 г.
Вена	0,15-0,16	Schedling 1965 г.
Ливерпуль	0,033-0,1666	Hettche 1961 г.
Гамбург	0,336	Hettche 1961 г.
Льеж	0,33-0,36	Hettche 1961 г.
3 крупных города	0,0028-0,011	Гуринов Б.П.
CCCP		Макринов В.А.

volgmed.ru

ВЕЛИЧИНА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ ЗАВИСИТ ОТ:

- 1. Мощности производства.
- 2. Качества сжигаемого топлива.
- 3. Наличия и совершенства очистных сооружений, которые задерживают выброс.
- 4. Места расположение жилого массива по отношению к промышленному предприятию.
- 5. Погодных условий на конкретной территории.

ПОСЛЕДСТВИЯ ЗАГРЯЗНЕНИЯ АТМОСФЕРНОГО ВОЗДУХА

- Ухудшение состояния растительности на планете в целом.
- Уменьшение прозрачности атмосферы и видимость в целом.
- Увеличение количества туманных дней в году.
- Разрушение многих предметов из металлов (коррозия).
- Ухудшение состояния здоровья человека.

ТИПИЧНЫЕ ВЕЩЕСТВА И ПРОДУКТЫ ЗАГРЯЗНЯЮЩИЕ БИОСФЕРУ

- 1. Химические вещества, использующиеся в различных промышленных целях:
- растворители,
- теплоносители,
- строительные материалы,
- дорожные покрытия и другие;
- 2. Химические вещества, использующиеся в бытовых целях:
- моющие средства,
- красители,
- препараты бытовой химии;
- 3. Химико-фармацевтические и косметические средства, и пищевые добавки:
- консерванты,
- пищевые красители,
- отдушки и другое...

ТИПЫ КОМБИНИРОВАННОГО ДЕЙСТВИЯ ХИМИЧЕСКИХ ВЕЩЕСТВ:

- Аддитивное действие такой тип комбинированного действия химических веществ, при котором их совместный эффект равен сумме эффектов каждого из веществ при изолированном воздействии на организм.
- А) более чем аддитивное действие (потенцирование) такой тип комбинированного действия, при котором совместный его эффект превышает сумму эффектов каждого из веществ, входящих в комбинацию, при их изолированном воздействии на организм.
- Б) менее чем аддитивное (антагонизм) такой тип комбинированного действия, при котором совместный эффект меньше сумме эффектов каждого из веществ, входящих в комбинацию, при их изолированном действии на организм.

ВЛИЯНИЕ АНТРОПОГЕННЫХ ЗАГРЯЗНИТЕЛЕЙ НА ЗДОРОВЬЕ:

І уровень:

→ Напряжение иммуной системы.

 $A \approx 1$ пдк.

II уравень:

- → Угнетение факторов неспецифической защиты.
- → Нарушение функционального состояния систем и органов.

 $A \approx 2$ пдк.

Ш уровень:

→ Увеличение острой заболеваемости.

 $A \approx 2 - 4$ пдк.

IV уровень:

- → Увеличение тяжести течения хронических заболеваеий.
- → Рост уровня распространености хронической патологии.

 $A \approx 4 - 5$ пдк.

V уровень:

 \rightarrow увеличение частоты множественности и сочетанных заболеваний $A\approx 5~\rm ng\kappa.$

ПРОЯВЛЕНИЯ ПОСЛЕДСТВИЙ ЗАГРЯЗНЕНИЯ БИОСФЕРЫ ДЛЯ ЗДОРОВЬЯ НАСЕЛЕНИЯ:

- 1. Омоложение ряда заболеваний (язвенной болезни, гипертонической болезни, нарушений обмена веществ и пр.).
- 2. Рост злокачественных новообразований и заболеваний, особенно опухолей верхних дыхательных путей и легких, а также системы крови;
- 3. Увеличение темпов биологического старения населения отдельных регионов; при этом разница между календарным и биологическим возрастом достигает 8 12 лет; следствие раннего старения снижение периода активной жизнедеятельности человека;
- 4. Сокращение продолжительности жизни.
- 5. Рост нервно-психических и психосоматических расстройств, так как многие химические вещества избирательно действуют на центральную нервную систему.
- 6. Снижение интеллектуального потенциала населения в связи с токсическим и радиационным воздействием на развивающийся мозг в раннем эмбриональном периоде и нарастанием числа детей с умственной отсталостью легкой степени.

ВЛИЯНИЕ ЗАГРЯЗНЕНИЯ АТМОСФЕРНОГО ВОЗДУХА НА ЗДОРОВЬЕ ДЕТЕЙ

Рост детей 9-10 лет на 3,5-3,9 см ниже средних показателей

Вес детей 9-10 лет на 2,7-4 кг ниже средних показателей

Выбросы типичных загрязнителей в атмосферу в 2-3 раза превышают ПДК

(пыль, окись азота)

▼
Многократно болеющие дети

в 2 раза больше среднего

(CO, H2S, сажа)

Заболевания хронич. бронхитом, пневмонией, хронич. тонзилитом в 2-2,4 раз выше среднего

виды отдаленных эффектов:

- BOHP NO. 19 35
- 1. Генетический увеличение хромосомных аббераций в соматических и половых клетках, что приводит к аномалиям развития плода, к возникновению спонтанных абортов;
- 2. Гонадотропный избирательное действие химических веществ на половой аппарат и половые клетки организма;
- 3. Эмбриотропный влияние химических веществ во время беременности, что может вызвать в развитии плода различные нарушения, которые условно можно подразделить на:
- а) Тератогенный эффект, проявляющийся дефектами развития плода, уродствами;
- б) Эмбриотоксический эффект, проявляющийся внутриутробной гибелью плода, снижением массы и размеров эмбриона.
- 4. Сенсибилизирующий

ПРИРОДОПОЛЬЗОВАНИЕ

Совокупность всех форм эксплуатации природно-ресурсного потенциала и мер по его сохранению

ПРИРОДНЫЕ РЕСУРСЫ

Исчерпаемые		Неисчерпаемые
Возобновимые	Невозобновимые	
Земельные	Минеральные	Энергия Солнца,
Водные ↓		Энергия текучей воды,
Биологические	Растительные	Энергия ветра,
	Животные	Климатические

volgmed.ru 2022

РАЦИОНАЛЬНОЕ ПРИРОДОПОЛЬЗОВАНИЕ

Система деятельности, призванная обеспечить экономную эксплуатацию природных ресурсов и условий и наиболее эффективный режим их воспроизводства с учетом перспективных интересов развивающегося хозяйства и сохранения здоровья людей.

Т.о. рациональное природопользование - это высокоэффективное хозяйствование, не приводящее к резким изменениям пориродноресурсного потенциала, к которым человечество не готово социально-экономически.

Оно не приводит к глубоким переменам в окружающей человека природной среде, наносящим урон его здоровью или угрожающим самой его жизни.

ЭКОЛОГИЧЕСКИЙ РИСК

Вероятность неблагоприятных для экологических ресурсов последствий любых (преднамеренных или случайных, постепенных или катастрофических) антропогенных изменений природных объектов и факторов.

ОЦЕНКА УРОВНЯ ЭКОЛОГИЧЕСКОГО РИСКА

- необходимый показатель, используемый при оценке качества окружающей природной среды.

Расчеты вероятностного экологического риска осуществляются отдельно для здоровья человека и окружающей природной среды и носят вероятностный характер.

ЗОНЫ ПОВЫШЕННОГО ЭКОЛОГИЧЕСКОГО РИСКА (ПЕТРОВ,1995)

- 1. хронического загрязнения окружающей среды;
- 2. повышенной экологической опасности;
- 3. чрезвычайной экологической ситуации;
- 4. экологического бедствия.

Зоны хронического загрязнения окружающей природной среды и повышенной экологической опасности - это территории регионов, городов, районов с устойчивым повышенным уровнем антропогенной нагрузки, снижением плодородия почв, дефицитом пресной воды, повышенным уровнем заболеваемости населения.

С ЦЕЛЬЮ МИНИМИЗАЦИИ РИСКОВ НЕОБХОДИМО:

- 1. Установить основные источники, степень опасности и факторы риска в каждой конкретной ситуации (оценка риска).
- 2. Разработать и обосновать наиболее эффективные пути его сокращения (управление риском).

ЗОНЫ ЧРЕЗВЫЧАЙНОЙ ЭКОЛОГИЧЕСКОЙ СИТУАЦИИ

- это территории, на которых в результате воздействия негативных антропогенных факторов происходят устойчивые отрицательные изменения окружающей природной среды, угрожающие здоровью населения, состоянию естественных экосистем, генофондам растений и животных.

В РФ такими территориями считают районы Северного Прикаспия, Байкала, Кольского полуострова, рекреационные зоны Черного и Азовского морей, промзону Урала, нефтепромысловые районы Западной Сибири и др.

ЗОНА ЭКОЛОГИЧЕСКОГО БЕДСТВИЯ

- это часть территории, на которой произошли глубокие необратимые изменения окружающей среды, повлекшие за собой существенное ухудшение здоровья населения, разрушение естественных экосистем, деградацию флоры и фауны.

Зона экологического бедствия объявляется указами Президента или постановлениями Правительства России на основе государственной экологической экспертизы (зона влияния Чернобыльской АЭС, Кузбасс и др.)

ЭКОЛОГИЧЕСКИЙ МОНИТОРИНГ

- это комплексная система наблюдений, оценки и прогноза состояния окружающей среды под действием природных и антропогенных факторов. Основной принцип мониторинга — непрерывное слежение.

По территориальному охвату различают три ступени экологического мониторинга: локальный (биоэкологический, санитарно-гигиенический); региональный (геосистемный, природно-хозяйственный) и глобальный (био-сферный, фоновый).

БЛАГОДАРЮ ЗА ВНИМАНИЕ!