

Лекция 4: Популяция и взаимодействие популяций.

доцент, к.б.н. Беляева Алина Васильевна

Популяционная экология

Молодая ветвь экологической науки.

Направленное развитие популяционных исследований началось в первой четверти XX века, но фактически данные о составе, структуре и динамике популяций можно найти и ранее.

Развитие популяционного направления характеризовалось не столько накоплением полевого и экспериментального материала, сколько формированием нового подхода при его анализе (популяция характеризуется появлением специфических свойств, которыми не обладают отдельные организмы данного вида).

Только на популяционном уровне выявляются такие свойства как:

- √численность,
- ✓ плотность,
- ✓ половой состав,
- ✓ возрастной состав,
- ✓ уровень размножения,
- ✓ уровень смертности

и другие....

Определение популяции

Термин «популяция» был заимствован из демографии, где он обозначал народ, население (*om лат. populus*).

Под популяцией понимается любая совокупность особей одного вида, проживающая длительное время на определенной территории, свободно скрещивающаяся друг с другом и дающая плодовитое потомство.

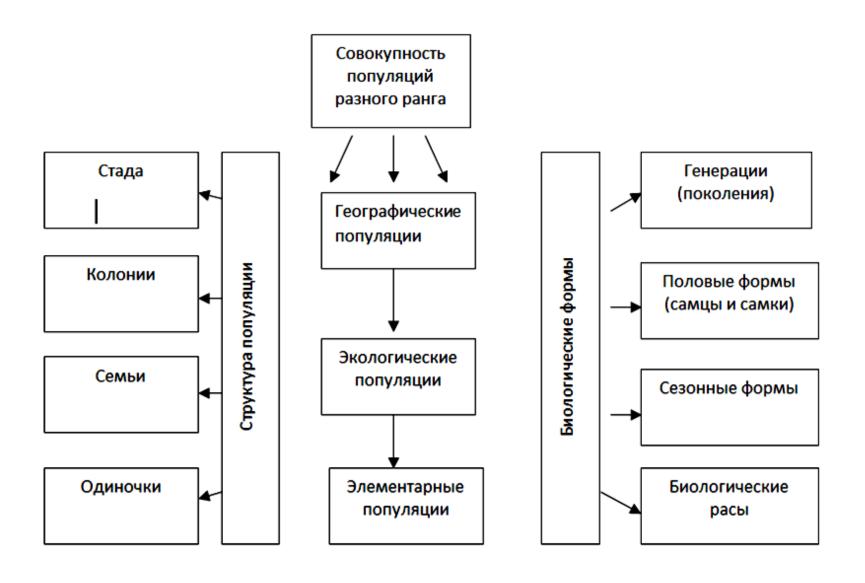
Популяция - это группировка особей одного вида, населяющих определенную территорию и характеризующихся общностью морфобиологического типа, специфичностью генофонда и системой устойчивых функциональных взаимосвязей (*Шилов И.А.*).

Популяция как биологическая система

Любая популяция занимает определенное место в пространстве и пространственно структурирована.

При этом характер этой структуры видоспецифичен и определяет возможность более эффективного использования ресурсов среды и устойчивого осуществления внутрипопуляционных взаимоотношений особей и их групп.

Эти взаимоотношения составляют сущность функционирования популяции как целого.


Особи, составляющие популяцию, неравноценны по своей функции, генетическому вкладу в нее, они непрерывно обмениваются информацией, при этом все они связаны индивидуальными и групповыми отношениями, которые определяют устойчивость популяции как системы на фоне колеблющихся условий среды.

Популяционная структура вида

Структурированность свойственна не только отдельным популяциям, но и виду в целом.

Занимая широкий ареал, вид естественным образом распадается на ряд территориальных групп различного масштаба.

Эти группы неравноценны, на базе чего формируется разнокачественность видового населения.

Структура популяций по Н.П. Наумову (1963)

Популяционная структура вида

Подвид — таксономическая категория, но одновременно это крупная территориальная группировка общего видового населения, освоившая географическое пространство ареала и адаптированная к фундаментальным свойствам климата, рельефа, типа ландшафта, биотического состава экосистем.

С экологических позиций это совокупность особей, населяющих географически однородную часть видового ареала и отличающихся устойчивыми морфологическими признаками от особей других подвидов.

Обычно подвиды пространственно изолированы друг от друга какими-либо значительными преградами (реками, горами, степями и т.п.). Это означает, что они достаточно давно репродуктивно отграничены от других подобных совокупностей.

Географические популяции

это совокупность особей *одного вида* (или подвида), населяющих территорию с *однородными условиями* существования и обладающих *общим морфологическим типом* и единым ритмом жизненных явлений и динамики (Наумов Н.П., 1963).

Эти группировки возникают при однонаправленном приспособлении вида к конкретным условиям.

Четких морфологических отличий между географическими популяциями, как правило, нет. Это отражает их более *низкий*

уровень их репродуктивной изоляции.

Пример: рыжие полевки, обитающие в холодном Подмосковье (чем в г. Серпухове) обладают более высокими энергозатратами на терморегуляцию, при сохранении сходного характера терморегуляционных кривых.

Экологические популяции

Это население одного типа местообитания (биотопа), характеризующиеся общим ритмом биологических циклов и характером образа жизни.

Это более мелкие территориальные группировки. Они возникают вследствие отличий в особенностях мезо- и микроклимата, рельефа, гидрологического режима и др. У особей формируется единый тип физиологических реакций, биоритмов и общего образа жизни.

Пример: муравейники, расположенные на более солнечных местах весной «оживают» раньше.

Бобры в крупных реках строят норы в крутых берегах (пищевой ресурс не ограничен), в мелких реках и ручьях — строят плотины (возникший выше плотины пруд расширяет доступ к кормовым участкам)

Плотина

Место популяции в иерархии биологических систем

В этом структурно-эволюционном ряду популяция выступает как форма существования вида и ее основная функция заключается в обеспечении устойчивого выживания и воспроизведения вида в данных конкретных условиях.

Любая популяция занимает определённое положение в пространстве и пространственно структуры видоспецифичен и определяет возможность наиболее эффективного использования ресурсов среды и устойчивого осуществления внутрипопуляционных взаимоотношений особей и их групп.

Составляющие популяцию *особи* при всём сходстве неравноценны по своим индивидуальным свойствам, и соответственно по их функции в составе популяции, генетическому вкладу в неё и т. д., т. е. популяция структурирована не только пространственно, но и функционально.

Под структурой популяции в широком смысле понимают любые подразделения популяции как единого целого на связанные в определённом порядке части.

Различают

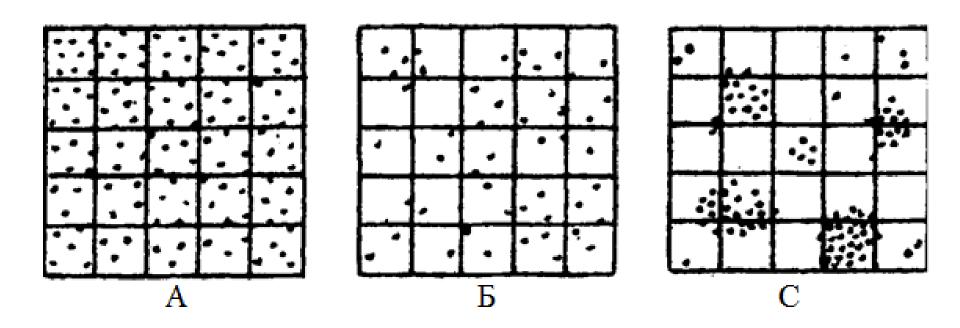
- √половую,
- ✓ возрастную,
- ✓ пространственно-этологическую,
- √генетическую,
- ✓ фенетическую структуры популяций.

Пространственная структура популяций выражается характером размещения особей и их группировок по отношению к определённым элементам ландшафта и друг к другу и отражает свойственный виду тип использования территории.

Пространственная структурированность определяет наиболее эффективное использование ресурсов среды, снижая уровень конкурентных отношений особей внутри популяции.

На этой основе открывается *возможность поддержания* высокого уровня биомассы и *биологической активности* вида.

Таким образом, пространственная структурированность популяций представляет собой «морфологическую» основу популяционного гомеостаза, определяя снижение уровня конкуренции и поддержание устойчивых внутрипопуляционных контактов как функциональных, так и информационных.


Регулярный (равномерный) тип пространственного распределения:

расстояние между особями, составляющими популяцию почти одинаковое. Примеры: размещение деревьев во фруктовом саду; популяциях многих видов птиц, имеющих в сезон размножения территориальную структуру.

Равномерный тип в идеале характеризуется *равным удалением каждой особи* от всех соседних; величина расстояния между особями соответствует порогу, за которым начинается *взаимное угнетение*.

Таким образом, теоретически этот тип распределения в наибольшей степени соответствует задаче *полного использования ресурсов* при минимальной степени конкуренции. <u>В действительности в природе оно встречается достаточно редко.</u>

Практическая невозможность реализации этого «идеального» типа распределения определяется, прежде всего, неоднородностью среды обитания; нарушают равномерность распределения и свойственные многим видам формы взаимосвязей.

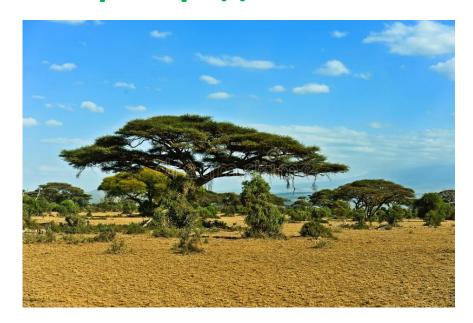
Типы пространственного распределения особей в популяциях:

А – равномерное; Б – диффузное; В – мозаичное

<u>Диффузный (случайный) тип :</u> характеризуется тем, что местонахождение одной особи не зависит от другой.

Случайно распределены особи большинства популяций, если местообитания однородны и достаточно благоприятны, а плотность популяции не очень высока.

Диффузный тип встречается в природе значительно чаще, при нём особи распределены неравномерно, случайно.


Такой тип распределения широко представлен среди растений и многих таксонов животных. Диффузное распределение характерно для животных, у которых социальные связи выражены относительно слабо.

Агрегированный (групповой, мозаичный, контагиозный): тип выражается в образовании группировок особей, между которыми остаются достаточно большие незаселённые территории.

Этот тип распределения характерен для популяций в мозаичных экосистемах, например, в саваннах деревья распределены группами, и соответственно группами распределены обитающие в них популяции птиц и насекомых.

Этот же тип распределения отмечается у животных, ведущих групповой образ жизни (сайгак, шимпанзе) и формирующих колонии (суслики, сурки), а также у клональных растений, разрастающихся пятнами (коротконожка перистая (Brachypodium pinnatum).

Групповое размещение особей жертв *осложняет хищникам их поиск.*

Разные типы пространственного распределения особей могут варьировать в популяциях одного вида или даже в одной популяции в разные сезоны года, или разные годы в зависимости от динамики условий существования.

Пример: для пашенной (тёмной) полёвки (*Microtus agrestis*) зимой, весной и в начале лета характерен мозаичный тип поселений, а в июле — октябре — диффузный, равномерный

Половая структура популяции

это численное соотношение мужских и женских особей в разных возрастных группах.

Определённой половой структурой обладают популяции большинства животных, двудомных растений и в несколько завуалированной форме однодомные растения с раздельнополыми цветками.

Половая структура популяций является важной и универсальной характеристикой для большинства видов. В наиболее чётком виде половая структура выражена у *членистоногих и позвоночных животных*, при этом она представлена не только численным соотношением полов, но и различиями в биологии, в том числе, связанными с формированием пространственной и функциональной структуры популяций.

Половая структура популяций динамична и в своей динамике тесно связана с возрастной структурой. Это проявляется в том, что численное соотношение самцов и самок заметно изменяется в разных возрастных группах.

В связи с возрастом различают первичное (на момент полового созревания), вторичное (на момент оплодотворения) и третичное (к моменту наступления половой зрелости) соотношение полов.

Первичное соотношение полов

определяется сочетанием половых хромосом в процессе мейоза и обычно близко 1:1.

У животных известно 10 основных путей хромосомного определения пола.

В пяти из них при сочетании половых хромосом ХҮ, ХО, Х1Х2...ХҮ, ХҮ1Ү2...Ү и Х1Х2...ХО гетерогаметным полом оказывается мужской, а в пяти аналогичных случаях — женский.

Действительно, в определении типа пола большое значение может иметь не только сочетание половых хромосом, но и набором аутосом.

Уже давно в экспериментах с дрозофилой было выявлено <u>существование 11 типов</u> <u>«половых» особей</u>: трёх типов фертильных самок, двух типов фертильных самцов, двух хромосомных типов стерильных самок с гипертрофированными признаками женского пола — «метасамок», одного такого же самца — «метасамца», двух типов интерсексов и одного типа стерильных (гаплоидных) самок (Яблоков, 1987).

Из приведённых данных видно, что в популяциях животных могут встречаться не только «обыкновенные» самки и самцы, но и особи других половых типов, часть которых оказывается фертильными, т. е. способными размножаться.

Первичное соотношение полов

По-видимому, существование разных хромосомных типов, как самок, так и самцов, для многих видов может скорее считаться *правилом*, чем исключением.

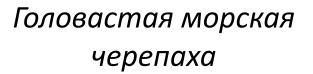
Пример: у лесного лемминга кроме самок XX обнаружены самки с X-хромосомой, содержащей фактор (*), который подавляет действие Y-хромосомы. В результате в популяции реально присутствуют самки XX, X*Y, X*X.

Доля самцов при равной фертильности всех трёх типов самок теоретически должна составлять 25 %, что подтверждено эмпирическими данными: из 1576 новорожденных самцы составили 24,8 %. Однако в разных популяциях фертильность разных типов самок, и соответственно соотношение полов неодинаковы. В популяциях данного вида в Карелии и Магаданской области доля самцов варьирует от 20 до 23 %, а на Южном Урале – до 70 %.

Вторичное соотношение полов

может варьировать в не менее широких пределах, чем первичное. Обычно вторичное соотношение полов на уровне 1:1 устанавливается в раннем возрасте, например, у осетровых рыб уже на 5–6 месяц развития. Однако на него могут влиять различные экологические (в широком смысле) факторы.

Уже в процессе оплодотворения *первичное соотношение полов может нарушаться* теоретически вероятной *избирательностью яйцеклеток к сперматозоидам*, несущим разные половые хромосомы, или *неодинаковой способностью таких сперматозоидов к оплодотворению*.


Сразу же после оплодотворения включаются другие влияния, например - средовое, которое направляет развитие в сторону преобладания того или иного пола.

Для многих видов рептилий показано ведущее *влияние температуры* развития на формирование пола. Температура окружающей среды достоверно определяет формирование самцов и самок в определённых интервалах температур.

Пример: у головастой морской черепахи при средней температуре инкубации 26–28 °C вылупляются самцы, при 30–32°C - самки. При промежуточных температурах (например, 29,3°C) выводится одинаковое количество особей каждого пола. При температурах ниже 26 и выше 32°C возможна смерть зародыша черепахи или генетические отклонения.

Доказана возможность гормональной регуляции вторичного соотношения полов практически у всех крупных групп позвоночных. При размножении крупного рогатого скота давно известны факты появления бесплодных тёлочек-интерсексов (фримартинов). Они возникают при развитии разнополых близнецов в результате подавления мужскими гормонами одного из плодов механизма развития женских половых органов у женского (по первичному определению пола) плода.

Вторичное соотношение полов

Таким образом, разная жизнеспособность мужских и женских особей на ранних этапах онтогенеза и экологический механизм определения пола в зависимости от условий развития на ранних стадиях делает вторичное определение пола достаточно лабильным показателем.

По нему могут различаться не только разные популяции внутри одного вида, но и одна и та же популяция в разные периоды существования.

Третичное соотношение полов.

Разнообразие первичного и вторичного соотношения полов предопределяют изменчивость и третичного соотношения полов — соотношения мужских и женских особей среди половозрелых размножающихся особей.

Получить надёжные данные по третичному соотношению полов в природных популяциях не всегда просто, потому что неожиданно неопределённым оказывается само понятие половозрелости.

При <u>неотении</u> могут размножаться физически незрелые особи, как у мексиканской амбистомы (*Ambystoma mexicanum S.&N., 1798*).

В природе распространено явление цикломорфоза, при котором отдельные поколения обоеполых особей сменяются партеногенетическими. Оно характерно для тлей, ветвистоусых рачков дафний, коловраток.

У ряда видов рыб (оризия японская) и амфибий (Ambystoma mexicanum) возможно гормональное переопределение пола в течение постнатального онтогенеза. Известно и многократное переопределение пола в онтогенезе.

Типы динамики половой структуры

(по В.Н. Большакову, Б.С. Кубанцеву

Первый - характерен *неустойчивый половой состав* популяции; соотношение полов меняется даже в разных местообитаниях, а также в относительно короткие промежутки времени. Происходит это на уровне, как вторичной, так и третичной половой структуры. В результате соотношение полов, рассчитанное статистически за большой промежуток времени, близко к единице. Такой характер динамики свойственен животным с коротким жизненным циклом, высокими показателями плодовитости и смертности и достаточно обширным ареалом (например, среди млекопитающих *землеройкам-бурозубкам*).

Второй - характеризуется *преобладанием самцов* на фоне колеблющегося полового состава и отмечается у животных, не образующих крупных скоплений, популяции которых не достигают высокой плотности. Видам, демонстрирующим такой тип динамики, свойственны выраженные формы заботы о потомстве, связанные с большими затратами энергии (например, хищным млекопитающим).

Третий - характеризуется на фоне примерно равного соотношения полов во вторичной структуре *преобладанием самок* в третичной структуре. Такой тип свойственен видам, у которых самцы отличаются меньшей продолжительностью жизни и при неблагоприятных условиях отмирают в большом количестве, например, полигамным млекопитающим (копытные, ластоногие), отличающимся большой продолжительностью жизни и относительно низким уровнем воспроизводства.

Четвёртый - характеризуется относительным *постоянством полового состава* при относительно равном соотношении самцов и самок. Такой тип свойственен узкоспециализированным стенобионтным видам с высокой плодовитостью (среди млекопитающих — **выхухоль**, крот, бобр).

Половая структура популяции

Таким образом, половая структура популяции может быть лишь <u>условно</u> представлена *средним* численным соотношением самцов и самок.

Реально она характеризуется соотношением полов в разных возрастных группах и отражает не только интенсивность размножения, но и общий биологический потенциал популяции: ход численности, уровень популяционных энергозатрат и др.

темпы воспроизводства, численность популяции и их изменения во времени определяются возрастной структурой, которая представляет собой соотношение особей разных возрастных групп, или разных поколений и приплодов.

Поколение (генерация) — всё непосредственное потомство особей, появившихся на свет на протяжении одного цикла размножения (у однократно размножающихся видов) или всего репродуктивного периода (у видов с неоднократным размножением на протяжении жизни). При этом продолжительность поколения (генерации) соответствует среднему репродуктивному возрасту, характерному для данной популяции.

Приплод (посев) - одновременно родившиеся особи от определённой совокупности родителей. Одна группа родителей может иметь несколько приплодов на протяжении одного или нескольких сезонов размножения. Приплод определённой пары родителей у живородящих животных называется помётом.

Возрастная группа — группа особей одинакового (астрономического или физиологического) возраста. В разных группах организмов определяется с разной точностью («молодые», «старые», «личинки», «имаго» и т. д.)

Возрастную структуру можно выразить также соотношением длительности предрепродуктивного, репродуктивного и пострепродуктивного периодов.

Возрастная структура зависит от генетических особенностей вида, которые реализуются в конкретных условиях существования. Разные возрастные группы могут существенно различаться типом питания и пространственно-биотопическим распределением.

Например, как гусеницы и имаго у чешуекрылых насекомых, головастики и взрослые особи у бесхвостых амфибий.

Таким образом, возрастная структурированность популяции существенно усиливает её экологическую неоднородность, повышая вероятность того, что при значимых изменениях условий существования в популяции сохранится хотя бы часть жизнеспособных особей, и она сможет продолжить свое существование.

Возрастной состав популяций графически изображается в виде возрастных пирамид.

В нормальной устойчиво существующей популяции число молодых всегда больше, чем количество особей старшего возраста. Возрастные пирамиды, отражая дифференцированную по возрастам смертность особей в популяции, отличаются подвижными характеристиками, изменяющимися даже в одной популяции на протяжении сравнительно коротких периодов времени.

Для некоторых видов животных возрастные пирамиды построить невозможно. Например, под возрастным составом популяций у насекомых понимают соотношение разных стадий развития (яйцо, личинка, куколка, имаго), или имаго разных возрастов в каждый данный момент времени. Если неблагоприятный сезон могут пережить только насекомые на одной какой-либо стадии, то именно они и будут представлены в течение всего этого сезона.

Присутствие в это время только половозрелых особей не будет означать, что популяция вымирает, точно так же, как наличие только яиц не свидетельствует о бурном процветании популяции. В последующем популяция в каждый момент времени может быть представлена только одной или двумя стадиями развития. У видов, размножающихся не один раз в году, одновременно присутствует большее количество возрастных групп.

На возрастную структуру популяций влияет и экологическая обстановка.

Например, в популяции **озёрной лягушки** на загрязнённой территории могут полностью отсутствовать сеголетки и годовики, тогда как возрастной состав популяции в условно чистой среде имеет типичную для данного вида структуру.

Это свидетельствует о неспособности лягушек загрязнённой зоны к нормальной репродукции, и популяция в таких условиях поддерживается благодаря миграции особей из других мест.

Генетическая структура популяций

Под генетической структурой популяции понимают соотношение индивидуумов – носителей различных аллелей, генов и генотипов.

Особенности организации генетического кода и его передачи по наследству, а также характер реализации генетической информации в онтогенезе определяют генетическую уникальность каждой особи.

Это, в свою очередь, обусловливает генетическую гетерогенность любой природной группировки особей, в том числе популяции.

Генетическая гетерогенность популяции первично возникает за счёт непрерывно текущего *мутационного процесса*.

Генетическая гетерогенность –

это любое, пусть даже самое минимальное генетическое разнообразие в популяции, формируемое в результате взаимодействия элементарных эволюционных факторов – мутационного процесса, естественного отбора, изоляции и волн жизни.

Одно из проявлений генетической гетерогенности – внутрипопуляционный *генетический полиморфизм*.

Полное описание генетической структуры какой-либо популяции врядли осуществимо — для этого потребовалось бы описание частот всех аллелей для десятков тысяч генов в их всевозможных сочетаниях.

Гомеостаз популяций

-способность популяции поддерживать свои параметры.

В природных условиях численность, структура и другие параметры популяций испытывают постоянные колебания, их амплитуда и период зависят от особенностей вида и условий среды обитания.

Устойчивость и относительная самостоятельность популяции, зависят от того, насколько её структура и внутренние свойства сохраняют свои приспособительные черты на фоне изменчивых условий существования.

Всё многообразие механизмов популяционного гомеостаза можно сгруппировать в три группы:

- > поддержание адаптивного характера пространственной структуры;
- > поддержание генетической структуры;
- регуляция численности и плотности населения.

Все эти механизмы определяются биологической и экологической спецификой вида, его взаимосвязями с биотической и абиотической средой.

У одних видов они могут проявляться в жёсткой форме, что приводит к гибели избытка особей, у других в смягчённой форме, например понижение плодовитости на основе условных рефлексов.

Гомеостаз популяций

Формирование адаптивной реакции на популяционном уровне определяется разнокачественностью особей по основным экологофизиологическим свойствам, благодаря которой особи и их группировки служат источником неодинаковой информации, по-разному реагируют на одни и те же условия. Что дает возможность популяции сохранятся.

Динамика популяций

Сложность условий, в которых функционируют природные популяции, приводит к тому, что их состав, структура и взаимоотношения с популяциями других видов претерпевают количественные и качественные изменения.

Наиболее примитивные из них проявляются в виде *изменений численности популяций*, которые могут быть относительно <u>незакономерными</u>, вызванными критическими воздействиями каких-либо *факторов*, но могут и иметь характер <u>закономерных</u> сезонных и многолетних циклов.

Свойственные популяции процессы постоянного воспроизведения сопровождаются столь же постоянным отмиранием особей.

В силу многих причин в сезонном и многолетнем масштабе изменяется возможность заселения отдельных территорий, что определяет динамику плотности населения даже при постоянном уровне репродукции.

В конкретных популяциях, локализованных в определённых границах пространства, постоянно происходят процессы притока особей извне и выселения определённой части населения за пределы популяции.

Все эти процессы определяют динамический характер популяции как системы.

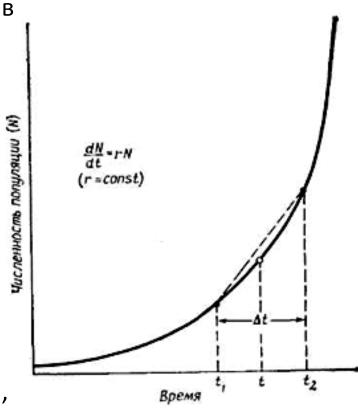
Основные динамические характеристики популяции

Рождаемость — число особей, родившихся за определённый промежуток времени, который устанавливается в соответствующем масштабе биологического времени: для бактерий он может быть равен одному часу, для планктонных водорослей — суткам, для насекомых — неделе или месяцу, для крупных млекопитающих, включая человека — году.

Смертность — число особей, умерших за ту же единицу времени (неважно, своей смертью или погибших, например съеденных).

Скорость иммиграции особей — число особей, появившихся в данной популяции, из других популяций (за ту же единицу времени).

Скорость эмиграции особей — число особей, покинувших данную популяцию за единицу времени.


Биотический потенциал

Демографические показатели определяют численность популяции и основные тенденции в её изменении.

Если рождаемость превышает смертность (b-d > 0), то популяция будет расти. Теоретически любая популяция способна к неограниченному росту численности, если её не лимитируют факторы внешней среды.

В такой гипотетической популяции r = b – d (репродуктивный, или биотический потенциал) является постоянной положительной величиной, и популяция растёт по экспоненциальному закону (рис.).

Скорость увеличения тем больше, чем выше численность (N).

Биотический потенциал

• Естественный рост популяции никогда не реализуется в форме экспоненты. Объясняется это тем, что не только в природных, но и в оптимальных экспериментальных условиях *рост* численности ограничен комплексом факторов внешней среды и реально складывается как результат соотношения меняющихся значений рождаемости и смертности.

Ёмкость и сопротивление среды

Численность популяций регулируется равновесием между двумя противоположными тенденциями: внутренне присущим данной популяции потенциалом роста и ограничениями, накладываемыми на рост средой.

Ресурсы на любой территории имеют пределы, которые называют ёмкостью среды.

Ёмкость среды — это число особей или сообществ, потребности которых могут быть удовлетворены ресурсами данного местообитания.

Например, еловый лес более ёмкая среда для белок, чем смешанный, поскольку их основная пища — семена шишек.

Теоретически организмы любого вида способны увеличивать численность популяции за счёт размножения. Однако в природе верхний предел численности практически никогда не достигается по ряду причин.

Одна из них кроется в генетической структуре популяции и заключается в том, что при благоприятных условиях среди прочих дают потомство и генетически неполноценные особи — это внутреннее сопротивление. В результате этого уменьшается жизнеспособность популяции в целом и ограничивается её рост.

Возможно, такие изменения в генетической структуре популяции играют немаловажную роль в периодических колебаниях численности.

Ещё одной причиной ограничения роста популяции являются факторы внешней абиотической и биотической среды, сокращающие численность организмов — это собственно сопротивление среды.

Ёмкость и сопротивление среды

Наиболее сильно сопротивление среды действует на *молодых особей*, больше других страдающих от хищников и болезней и т. д., оно *снижает темпы пополнения популяции*, хотя скорость размножения может остаться прежней.

В более суровых условиях гибнет и часть взрослых особей.

Таким образом, рост, снижение или постоянство численности популяции зависит от *соотношения между биотическим потенциалом* (прибавлением особей) и *ёмкостью среды* (гибелью особей).

Численность популяции

Типы динамики населения по С.А. Северцову:

1- стабильный,

2 – лабильный,

3 – эфемерный

Стабильный тип динамики численности характеризуется малой амплитудой (численность изменяется в разы) и длительным периодом колебаний численности (10–20 лет); внешне она воспринимается как практически стабильная. Такой тип динамики свойственен крупным животным (например, копытным, человекообразным обезьянам) с большой продолжительностью, поздним наступлением половозрелости и низкой плодовитостью.

Это соответствует низкой норме естественной смертности, в т.ч. в результате эффективных механизмов адаптации к действию неблагоприятных факторов.

Лабильный тип динамики отличается закономерными колебаниями численности с периодами порядка 5—11 лет и более значительной амплитудой (численность меняется в десятки раз).

Характерны сезонные изменения обилия, связанные с периодичностью размножения.

Такой тип динамики свойственен животным разного, но, как правило, не крупного размера с более коротким сроком жизни (до 10–15 лет), и соответственно более ранним половым созреванием и более высокой плодовитостью, чем у представителей первого типа (например, зайцеобразным, крупным грызунам).

Эфемерный тип динамики отличается резко неустойчивой численностью с глубокими депрессиями, сменяющимися вспышками «массового размножения».

Продолжительность периода составляет до 4–5 лет. Амплитуда может достигать и сотен раз.

Такой тип динамики характерен для короткоживущих (не более 3-х лет) видов с несовершенными механизмами индивидуальной адаптации и соответственно высокой нормой гибели. Это некрупные животные, отличающиеся большой плодовитостью (например, мелкие грызуны и насекомоядные).

Разные типы динамики фактически отражают разные жизненные стратегии.

Согласно концепции экологических стратегий, разработанной р. Мак-Артуром и Э.Уилсоном, успешное выживание и воспроизводство вида возможно либо путём совершенствования адаптированности организмов и их конкурентоспособности, либо путём интенсификации размножения, что компенсирует повышенную гибель особей и в критических ситуациях позволяет быстро восстановить численность.

Первый путь назван **«К-стратегией»** и характерен для крупных животных с большой продолжительностью жизни, численность которых лимитируется преимущественно внешними факторами. К-стратегия означает *«отбор на качество»* – повышение адаптивности и устойчивости.

Второй путь - **«r-стратегия»** – *«отбор на количество»* – поддержание устойчивости популяции через компенсацию неизбежно больших потерь высоким репродуктивным потенциалом.

r-стратегия свойственна мелким животным с большой нормой гибели и высокой плодовитостью (r-коэффициент, отражающий скорость роста популяции).

Этологическая структура популяции.

систему взаимоотношений между членами одной популяции называют этологической, или поведенческой структурой популяции.

Одиночный образ жизни

характерен для многих видов (например, ежи, сомы, щуки и т.д.), но лишь на определенных стадиях жизненного цикла.

Поэтому абсолютно одиночного существования организмов в природе не встречается, иначе погибли бы соответствующие популяции.

У видов с преимущественно одиночным образом жизни часто возникают *временные скопления* — в местах зимовок, а также в период перед размножением.

Пример: Божьи коровки осенью образуют целые гроздья в сухой подстилке возле пней и комлей деревьев.

Проживание в группе себе подобных отражается на протекании многих физиологических процессов в организме животного.

У искусственно изолированных особей заметно меняется уровень метаболизма, быстрее тратятся резервные вещества, не проявляется целый ряд инстинктов и ухудшается общая жизнеспособность.

Под эффектом группы понимают *оптимизацию* физиологических процессов, ведущую к повышению жизнеспособности особей при их совместном существовании.

Эффект группы проявляется как реакция отдельной особи на присутствие других особей своего вида.

Так, у *овец* вне стада резко учащаются пульс и дыхание, а при виде приближающегося стада эти процессы нормализуются, и овца успокаивается.

Известно также, что для выживания *африканских слонов* стадо должно состоять по крайней мере из 25 особей.

Эффект группы состоит также в ускорении темпов роста животных, повышении плодовитости, более быстром образовании условных рефлексов, повышении средней продолжительности жизни индивидуума.

В группах животные часто способны поддерживать оптимальную температуру (при скучивании, в гнездах, ульях). У многих животных вне группы не реализуется плодовитость.

Так, голуби некоторых пород не откладывают яйца, если не видят других птиц. Достаточно поставить перед самкой зеркало, чтобы она приступила к яйцекладке.

Эффект группы не проявляется у видов, ведущих одиночный образ жизни.

Если таких животных искусственно заставить жить вместе, у них повышается *раздражительность*, учащаются столкновения, повышаются энергозатраты на поддержание жизнедеятельности.

Так, **ушастые ежи** в группе повышают потребление кислорода до 134% по сравнению с содержащимися в одиночестве.

Биологи считают, что самое сильное проявление эффекта группы свойственно *общественным насекомым* (пчелам, муравьям, термитам).

Не обладая способностью длительно существовать в одиночку (что заложено у них в генетической программе), эти насекомые выработали *сложную систему* сигнализации, которая способствует сохранению их особей во времени и пространстве.

Семейный образ жизни резко усиливает связи между родителями и их потомством.

Известное проявление этого — забота одного из родителей об отложенных яйцах или кормление самцом самки. При этом заботы о птенцах продолжаются до поднятия их на крыло, а у ряда крупных млекопитающих (медведей, тигров) детеныши воспитываются в семейных группах в течение нескольких лет, до наступления их половой зрелости.

В зависимости от того, кто из родителей берет на себя уход за потомством, различают семьи отцовского, материнского и смешанного типа.

В семьях с устойчивым образованием пар обычно оба родителя принимают участие в охране и выкармливании молодняка.

При семейном образе жизни территориальное поведение животных выражено наиболее ярко. Присущие ему различные сигналы, маркировка, ритуальные формы угрозы и даже прямая угроза (часто со стороны и самца и самки) обеспечивают владение участком, размеры и пищевая емкость которого достаточна для выкармливания потомства.

Колония

групповое поселение оседлых животных, которое может существовать как длительно, так и возникать лишь на период размножения (грачи, чайки, гагары и т.п.).

Значительно более сложная форма колонии — поселения животных, в которых отдельные их жизненные функции выполняются сообща; что повышает вероятность выживания отдельных особей.

Так, тревога, поднятая любой заметившей хищника птицей, мобилизует остальных и им сообща удается его отогнать.

Некоторые общественные насекомые — пчелы, муравьи, термиты *организуют весьма сложные колонии* — *семьи*.

Здесь насекомые выполняют сообща много основных функций: защиты, размножения, обеспечения кормом себя и потомства, строительства и т.п., для чего осуществляют обязательное разделение труда и специализацию отдельных особей, в том числе разных возрастных групп. При этом члены колонии постоянно обмениваются информацией друг с другом.

Стая

это временное объединение животных одного вида (насекомых, птиц, рыб, реже млекопитающих и др.), связанное с общностью места обитания или размножения.

Стайность облегчает выполнение каких-либо функций в жизни вида, например, защиты от врагов, добычи пищи, миграции.

Исходя из способа координации действий, стаи подразделяются на два вида:

- без выраженного лидера (обычно у рыб);
- с лидерами, на которых ориентируются остальные особи (стаи крупных птиц и млекопитающих, например волков).

Волчьи стаи образуются зимой для групповой охоты. В этом случае зверям удается справиться с крупными копытными (например взрослым лосем), охота на которых в одиночку часто заканчивается гибелью самого хищника.

В процессе групповой охоты вожак стаи «организует» засады, захват жертвы в кольцо и другие действия, что требует согласованности и координации действий всех членов стаи.

Стадо

это группа диких или домашних животных одного вида, обитающая на какой-либо территории (например, стадо оленей) или акватории.

В стаде осуществляются все основные функции жизни: добывание корма, защита от хищников, миграции, размножение, воспитание молодняка и т.п.

При этом *основу* группового поведения животных в стадах составляют *взаимоотношения доминирования* (главенства) — подчинения, которые обусловлены индивидуальными различиями между особями.

Иерархически организованному стаду свойствен закономерный порядок перемещения, определенная организация при защите, расположении на местах отдыха и т.п.

Так, при передвижении стада павианов в центре, в наибольшей безопасности, находятся самки с детенышами или беременные, по краям вожаки, молодые самцы и неразмножающиеся самки. Впереди и позади стада располагаются крупные самцы, готовые отразить нападение хищника.

В биологическом аспекте смысл иерархической системы «доминирования-подчинения» заключается в создании согласованного поведения группы, которое выгодно для всех ее членов.

Осуществив своеобразную «расстановку сил», животные уже *не тратят лишней энергии* на конфликты между отдельными особями, а группа в целом получает преимущества, подчиняясь наиболее сильным и опытным индивидуумам.

Конечно, в экстремальных условиях (например, при отсутствии кормов), гибнут в первую очередь более слабые, подчиненные особи, но тем не менее под защитой группы они все же имеют больше шансов выжить, нежели в одиночку.

