Введение в нейробиологию

12. Мембранный транспорт и генерация мембранных потенциалов

12.2. Регуляция Na+/K+

Активность Na, K-насоса может контролироваться быстрым удалением эндоскота и инсерцией в ответ на GPCR-регулированное фосфорилирование α-субъединиц. Например, почечная проксимальная канальцевая эпителия выделяет допамин, который действует на аутокрин-D1-подобные рецепторы для удаления насосов Na, K из их базолатеральной плазматической мембраны (рис.5-5). Эндоцитоз насосов инициируется фосфорилированием в ser-18 его α1-субъединицы с помощью ζ-PKC, что позволяет взаимодействовать PI3KIA с α-субъединицей и AP-2, тем самым индуцируя связывание клатрина (см. Гл. 9). Ультрарегуляция насосов Na, K путем рекрутинга требует α1-фосфорилирования как ser-11, так и ser-18, который может быть через β-PKC в ответ на активированные серотонином или ангиотензином GPCR, что приводит к связыванию AP-1. Другой путь активации для рекрутирования Na, K-насоса в плазматические мембраны, по-видимому, включает фосфатирование субъединицы α1 на tyr-527 [19]. Эндоцитоз и рекрутирование насосов Na, K происходит в первичных изолятах полосатых нейронов. Однако в этих нейронах только две субъединицы были удалены в ответ на допамин, тогда как субъединицы α1 были выборочно завербованы в ответ на глутамат [20]. Сотовые и субклеточные распределения изоформ α-субъединиц дают ключ к их различным физиологическим функциям. Четыре изоформы демонстрируют примерно 85% идентичности последовательности. Наиболее существенные различия наблюдаются в их N-концевых областях и в последовательности с 11 остатками большой цитоплазматической петли. При измерении в культурах клеток изоформы отличаются по своей видимой аффинности для внутриклеточного Na + (α1 <α2 <α3) [21] и внеклеточного K + (α3 <α2 = α1) [22]. Во взрослых тканях α1 является основной изоформой в большинстве клеток и функционирует как изомера «домашнего хозяйства» или «объемной экстракции Na». Изоформы α2, α3 и α4 подвержены уникальным формам регуляции и субклеточной локализации. У взрослых млекопитающих мозг α1 экспрессируется как в нейронах, так и в глии, α2 выражается в глии и некоторых нейронах, а α3 выражается в большинстве нейронов. В тканевой культуре астроциты, нейроны гиппокампа и артериальные миоциты все экспрессируют α1 диффузно в своей плазмалемме. Напротив, иммуноцитохимически окрашенные α2 в астроглии и α3 в миоцитах и ​​нейронах показывают ретикулярные структуры и колокализуются с Na + / Ca2 + -обменником (NCX) (фиг.5-6). Эти ретикулярные картины плазмалеммы совпадают с закономерностями окрашивания для соединительных комплексов на саркоплазматическом ретикулуме, а также в астроглии и нейронах, соединительных комплексах на эндоплазматическом ретикулуме [23]. [Na +] и, во-вторых, увеличивают цитозольный [Ca2 +], который затем увеличивает сократительную способность сердечной мышцы. Это предполагаемый кардиотонический механизм наперстянки и родственных кардиостероидов. 

Генетические данные подтверждают важность координированного экспрессии и распределений изоформ α2 или α3 Na + / K + с насосами Na + / Ca2 + (NCX) и Ca2 + для работы в возбудимых и сократимых клетках: удаление одной копии насоса α2 Na + / K + ген у мышей приводит к увеличению сократительной силы в сердечной и скелетной мышцах, в то время как делеция одной копии гена α1 приводит к уменьшению сократительной силы [25]. В астроцитах крысиного зрительного нерва делеция α2-гена или ауабаиновой обработки клеток, экспрессирующих α2, приводит к увеличению ответов «емкостного входа в кальций», которые отражают снижение способности быстро удалять цитозольный Ca2 + [26]. 

Насосы Na, K могут функционировать в качестве преобразователей сигналов. Как обсуждалось выше, кардиоактивные стероиды уже давно используются для увеличения сердечной силы. Это происходит потому, что они ингибируют Na + / K + насосы, увеличивая таким образом цитоплазматический [Na +], замедляя активность Na + / Ca2 + -обменника и увеличивая цитозоль [Ca2 +]. Эти натриевые насосы имеют эволюционно консервативный и высокоселективный сайт связывания кардиоактивных стероидов, что побудило поиск возможного эндогенного «уабаин-подобного вещества» или OLS. Фактически такие вещества были идентифицированы в головном мозге, коре надпочечников, плазме и моче, хотя и при очень низких концентрациях. Повышенные уровни OLS были связаны, экспериментально и клинически, с сохранением соли, гипертонией и гипертрофией сердца. Их химические структуры очень похожи на уабаин [27]. Недавняя работа связана с кардиоактивным связыванием стероидов с натриевым насосом, причем не только с ингибированием накачки, но также с активацией сигнального каскада протеинкиназы (ERK), вызванного внеклеточным рецептором. После контакта с сердечками крыс с положительной инотропной дозой уабаина содержание фосфорилированного / активированного ERK1 / 2 увеличивается в два-три раза, тогда как Src и α2-изоформа Na, K-АТФазы увеличиваются на 50-60% в изолированных кавеолах. Изолированные обогащенные кавеолином мембранные фракции из миоцитов сердца крысы содержат почти все кардиоспецифичные кавеолин-3, 20-30% от общего количества натриевых насосов, и они обогащены сигнальными белками, Src, рецептором эпидермального фактора роста (EGFR) и ERK1 / 2 [28]. Такие наблюдения предполагают, что OLS может действовать в системах сигнализации с участием некоторых из этих белков.