С.А.Куценко. ОСНОВЫ ТОКСИКОЛОГИИ

7. Проникновение ксенобиотиков в печень

Печень - важнейший орган, принимающий участие в обмене веществ. Кровь, оттекающая от кишечника и содержащая вещества, поступившие в организм, направляются по системе портальной вены, прежде всего, в печень. Бесчисленное количество необходимых для организма и чужеродных соединений попадают в печень и подвергаются здесь метаболическим превращениям. Печень является органом выделения. В её секрет - желчь, выделяемый в просвет кишки, переходят многие вещества. Механизмы проникновения веществ из крови в печень и факторы, влияющие на этот процесс, имеют ряд особенностей.

7.1. Сосудистое русло

Орган снабжается кровью из двух источников. Система портальной вены приносит в печень венозную кровь, оттекающую от кишечника. Аортальная кровь поступает через печеночную артерию. В этой связи, ксенобиотики, проникающие в организм через желудочно-кишечный тракт, привносятся в орган с портальной кровью, а проникающие через кожу и легкие - по системе артериальных сосудов. Из общего объёма сердечного выброса крови, четверть (25%) поступает в печень по системе печеночной артерии, а 75% - по системе портальной вены (со сниженным содержанием кислорода).

Печеночная артерия, портальная вена и желчевыводящий проток образуют тесно связанный пучок, называемый портальной триадой. Кровь, поступающая по кровеносным сосудам, собирается в печеночные синусоиды, а затем в терминальную печеночную вену, располагающуюся в центре печеночной дольки. По печеночной вене, оттекающая от органа кровь, поступает в общий кровоток.

Именно через стенки синусоидов ксенобиотики проникают из крови в гепатоциты. Эндотелиальные клетки синусоидов имеют ядро и хорошо развитую цитоплазму. Между контактирующими клетками, как правило, имеются большие промежутки, размером 0,1 - 1,0 мкм. Это позволяет даже макромолекулам практически беспрепятственно проникать из кровеносного русла в ткань печени. В стенках печеночных капилляров залегают Купферовские звездчатые клетки. Они участвуют в захвате макромолекул и корпускулярных образований, проникших в печень, путем их пино- и фагоцитоза. Частично гепатоциты сами формируют стенку синусоида.

Между фенестрированным эндотелием синусоида и мембраной гепатоцита имеется пространство, шириной от 60 нм до 0,5 мкм (перекапиллярное пространство Диссе), куда свободно проникает плазма крови, с циркулирующими в ней веществами. Базальная поверхность гепатоцитов имеет множественные выросты, направленные в сторону этого пространства, увеличивающие площадь контакта между клетками и плазмой. Этим обеспечивается возможность усиленной абсорбции веществ из крови. Таким образом, особенность морфологии гистогематического барьера в печени состоит в том, что он представлен только клеточной мембраной гепатоцита. Кроме того, в печени выявлены многочисленные механизмы активного транспорта веществ через биологические мембраны.

7.2. Активный транспорт

Помимо жизненно необходимых веществ, печень активно захватывает многие чужеродные соединения. Прежде всего к их числу относятся различные органические кислоты и некоторые основания, выделяющиеся затем в желчь в свободной либо конъюгированной форме. Их перемещение из крови в орган и из органа в желчь порой осуществляется против градиента концентрации. Так, содержание прокаинамида в желчи может быть в 80 раз выше, чем в плазме крови. Транспортные системы, обеспечивающие движение ксенобиотиков из крови в печень, как правило, характеризуются способностью к насыщению, угнетаются веществами, блокирующими обмен веществ, и субстратами-антагонистами. Захват прокаинамида из крови и выделение в желчь блокируется молекулами других веществ - органических оснований. Органические кислоты, например бромсульфолеин, не влияют на процесс. Таким образом, транспортные системы переноса через печень органических кислот и оснований различны.

7.3. Мембранная диффузия

Как уже указывалось, функции гистогематического барьера в печени выполняют клеточные мембраны гепатоцитов. Мембрана печеночных клеток отличается высокой порозностью (в сравнении с другими клетками) и этим также определяются некоторые особенности поступления веществ из крови в печень. Хотя многие макромолекулы, легко преодолевающие эндотелиальный барьер печеночных синусоидов, и задерживаются в межклеточном пространстве, водо-растворимые молекулы с небольшой молекулярной массой легко проникают через клеточную мембрану гепатоцита. Так, водо-растворимые неэлектролиты манитол и сорбитол с большой скоростью переходят в клетки печени при их введении в кровь. Многие не растворимые в липидах вещества, такие как сахароза, инулин, декстран хорошо переносятся из крови в желчь.

Проницаемость биологического барьера для ксенобиотика может быть рассчитана по формуле:

KP = - 1/t ln [ 1 - (Ct/Cmax)] , где

KP - константа проницаемости барьера;

Ct и Cmax - концентрации веществ в ткани в момент времени t (мин) и максимальная концентрация, достижимая при оптимальных условиях эксперимента.

Если графически изобразить зависимость значений KP от коэффициента распределения веществ в системе гептан/вода, можно оценить влияние такого их свойства, как жиро-растворимость, на способность преодолевать данный биологический барьер. На рисунке 2 представлены рассматриваемые зависимости для печеночного и ликворного барьеров.

http://www.medline.ru/public/monografy/toxicology/p4-toxicokinetics/img/t-p78.gif

Рисунок 2. Зависимость между значениями коэффициентов распределения веществ в системе гептан/вода и их проницаемостью через гематоликворный и печеночный барьеры у кролика (H. Kurz, 1964).

Как видно из данных, представленных на рисунке, свойства гематоликворного и печеночного барьеров различны. Основная особенность печеночного барьера - отсутствие большого отличия в способности водо- и жирорастворимых веществ преодолевать его. Это связано с высокой порозностью клеточной мембраны гепатоцитов.

7.4. Фагоцитоз

Агломераты макромолекул, микрочастицы веществ, попавшие (или образовавшиеся) в кровь могут захватываться путем фагоцитоза Купферовскими звездчатыми клетками синусоидов печени. К фагоцитозу способны также эндотелиальные и паренхиматозные клетки печени. Захват частиц и макромолекул - энергозависимый процесс, угнетаемый ингибиторами процесса окислительного фосфорилирования, в частности, цианидами. Однако захват печенью крупных частиц ксенобиотиков, циркулирующих в крови, не всегда является следствием фагоцитоза. Так, в отношении агломератов полианионов (например, полифосфатов) печень ведет себя, как ионообменная колонка, адсорбируя их на поверхности гепатоцитов.