Старение, воспаление и гликирование

8. Литература

    1. Ashraf J. M., Ahmad S., Choi I., Ahmad N., Farhan M., Tatyana G., et al. . (2015). Recent advances in detection of AGEs: immunochemical, bioanalytical and biochemical approaches. IUBMB Life 67, 897–913. 10.1002/iub.1450 - DOI PubMed
    1. Aso Y., Inukai T., Tayama K., Takemura Y. (2000). Serum concentrations of advanced glycation endproducts are associated with the development of atherosclerosis as well as diabetic microangiopathy in patients with type 2 diabetes. Acta Diabetol. 37, 87–92. 10.1007/s005920070025 - DOI PubMed
    1. Baig M. H., Jan A. T., Rabbani G., Ahmad K., Ashraf J. M., Kim T., et al. . (2017). Methylglyoxal and advanced glycation end products: insight of the regulatory machinery affecting the myogenic program and of its modulation by natural compounds. Sci. Rep. 7:5916. 10.1038/s41598-017-06067-5 - DOI PMC PubMed
    1. Baulmann J., Nurnberger J., Slany J., Schmieder R., Schmidt-Trucksass A., Baumgart D., et al. (2010). [Arterial stiffness and pulse wave analysis]. Dtsch. Med. Wochenschr. 135(Suppl. 1), S4–S14. 10.1055/s-0030-1249183 - DOI PubMed
    1. Brouwers O., Niessen P. M., Ferreira I., Miyata T., Scheffer P. G., Teerlink T., et al. . (2011). Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J. Biol. Chem. 286, 1374–1380. 10.1074/jbc.M110.144097 - DOI PMC PubMed
    1. Brouwers O., Niessen P. M., Miyata T., Ostergaard J. A., Flyvbjerg A., Peutz-Kootstra C. J., et al. . (2014). Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes. Diabetologia 57, 224–235. 10.1007/s00125-013-3088-5 - DOI PubMed
    1. Bucciarelli L. G., Wendt T., Qu W., Lu Y., Lalla E., Rong L. L., et al. . (2002). RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation 106, 2827–2835. 10.1161/01.CIR.0000039325.03698.36 - DOI PubMed
    1. Cai W., Gao Q.-D., Zhu L., Peppa M., He C., Vlassara H. (2002). Oxidative stress-inducing carbonyl compounds from common foods: novel mediators of cellular dysfunction. Mol. Med. 8, 337–346. - PMC PubMed
    1. Campbell D. J., Somaratne J. B., Jenkins A. J., Prior D. L., Yii M., Kenny J. F., et al. . (2011). Impact of type 2 diabetes and the metabolic syndrome on myocardial structure and microvasculature of men with coronary artery disease. Cardiovasc. Diabetol. 10, 80–80. 10.1186/1475-2840-10-80 - DOI PMC PubMed
    1. Campbell D. J., Somaratne J. B., Jenkins A. J., Prior D. L., Yii M., Kenny J. F., et al. . (2012). Diastolic dysfunction of aging is independent of myocardial structure but associated with plasma advanced glycation end-product levels. PLoS ONE 7:e49813. 10.1371/journal.pone.0049813 - DOI PMC PubMed
    1. Chang J. S., Wendt T., Qu W., Kong L., Zou Y. S., Schmidt A. M., et al. . (2008). Oxygen deprivation triggers upregulation of early growth response-1 by the receptor for advanced glycation end products. Circ. Res. 102, 905–913. 10.1161/CIRCRESAHA.107.165308 - DOI PubMed
    1. Chavakis T., Bierhaus A., Nawroth P. P. (2004). RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microb. Infect. 6, 1219–1225. 10.1016/j.micinf.2004.08.004 - DOI PubMed
    1. Choi K. M., Yoo H. J., Kim H. Y., Lee K. W., Seo J. A., Kim S. G., et al. . (2009). Association between endogenous secretory RAGE, inflammatory markers and arterial stiffness. Int. J. Cardiol. 132, 96–101. 10.1016/j.ijcard.2007.10.047 - DOI PubMed
    1. Daffu G., del Pozo C. H., O'Shea K. M., Ananthakrishnan R., Ramasamy R., Schmidt A. M. (2013). Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int. J. Mol. Sci. 14, 19891–19910. 10.3390/ijms141019891 - DOI PMC PubMed
    1. Da Moura Semedo C., Webb M., Waller H., Khunti K., Davies M. (2017). Skin autofluorescence, a non-invasive marker of advanced glycation end products: clinical relevance and limitations. Postgrad. Med. J. 93, 289–294. 10.1136/postgradmedj-2016-134579 - DOI PubMed
    1. Forbes J. M., Yee L. T., Thallas V., Lassila M., Candido R., Jandeleit-Dahm K. A., et al. . (2004). Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes 53, 1813–1823. 10.2337/diabetes.53.7.1813 - DOI PubMed
    1. Gaballa M. A., Jacob C. T., Raya T. E., Liu J., Simon B., Goldman S. (1998). Large artery remodeling during aging: biaxial passive and active stiffness. Hypertension 32, 437–443. 10.1161/01.HYP.32.3.437 - DOI PubMed
    1. Gao X., Zhang H., Schmidt A. M., Zhang C. (2008). AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2 diabetic mice. Am. J. Physiol. Heart Circ. Physiol. 295, H491–H498. 10.1152/ajpheart.00464.2008 - DOI PMC PubMed
    1. Giacco F., Du X., D'Agati V. D., Milne R., Sui G., Geoffrion M., et al. . (2014). Knockdown of glyoxalase 1 mimics diabetic nephropathy in nondiabetic mice. Diabetes 63, 291–299. 10.2337/db13-0316 - DOI PMC PubMed
    1. Goldin A., Beckman J. A., Schmidt A. M., Creager M. A. (2006). Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114, 597–605. 10.1161/CIRCULATIONAHA.106.621854 - DOI PubMed
    1. Greenwald S. E. (2007). Ageing of the conduit arteries. J. Pathol. 211, 157–172. 10.1002/path.2101 - DOI PubMed
    1. Gu Q., Wang B., Zhang X. F., Ma Y. P., Liu J. D., Wang X. Z. (2014). Contribution of receptor for advanced glycation end products to vasculature-protecting effects of exercise training in aged rats. Eur. J. Pharmacol. 741, 186–194. 10.1016/j.ejphar.2014.08.017 - DOI PubMed
    1. Hadi H. A. R., Suwaidi J. A. (2007). Endothelial dysfunction in diabetes mellitus. Vasc. Health Risk Manag. 3, 853–876. - PMC PubMed
    1. Hallam K. M., Li Q., Ananthakrishnan R., Kalea A., Zou Y. S., Vedantham S., et al. . (2010). Aldose reductase and AGE–RAGE pathways: central roles in the pathogenesis of vascular dysfunction in aging rats. Aging Cell 9, 776–784. 10.1111/j.1474-9726.2010.00606.x - DOI PMC PubMed
    1. Hanford L. E., Enghild J. J., Valnickova Z., Petersen S. V., Schaefer L. M., Schaefer T. M., et al. . (2004). Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE). J. Biol. Chem. 279, 50019–50024. 10.1074/jbc.M409782200 - DOI PMC PubMed
    1. He C., Sabol J., Mitsuhashi T., Vlassara H. (1999). Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes 48, 1308–1315. 10.2337/diabetes.48.6.1308 - DOI PubMed
    1. Henning C., Glomb M. A. (2016). Pathways of the Maillard reaction under physiological conditions. Glycoconj. J. 33, 499–512. 10.1007/s10719-016-9694-y - DOI PubMed
    1. Herold K., Moser B., Chen Y., Zeng S., Yan S. F., Ramasamy R., et al. . (2007). Receptor for advanced glycation end products (RAGE) in a dash to the rescue: inflammatory signals gone awry in the primal response to stress. J. Leukoc. Biol. 82, 204–212. 10.1189/jlb.1206751 - DOI PubMed
    1. Hudson B. I., Kalea A. Z., Del Mar Arriero M., Harja E., Boulanger E., D'Agati V., et al. . (2008). Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J. Biol. Chem. 283, 34457–34468. 10.1074/jbc.M801465200 - DOI PMC PubMed
    1. Izzo J. L., Jr. (2004). Arterial stiffness and the systolic hypertension syndrome. Curr. Opin. Cardiol. 19, 341–352. 10.1097/01.hco.0000126581.89648.10 - DOI PubMed
    1. Jo-Watanabe A., Ohse T., Nishimatsu H., Takahashi M., Ikeda Y., Wada T., et al. . (2014). Glyoxalase I reduces glycative and oxidative stress and prevents age-related endothelial dysfunction through modulation of endothelial nitric oxide synthase phosphorylation. Aging Cell 13, 519–528. 10.1111/acel.12204 - DOI PMC PubMed
    1. Kaess B. M., Rong J., Larson M. G., Hamburg N. M., Vita J. A., Levy D., et al. . (2012). Aortic stiffness, blood pressure progression, and incident hypertension. JAMA 308, 875–881. 10.1001/2012.jama.10503 - DOI PMC PubMed
    1. Kalea A. Z., Reiniger N., Yang H., Arriero M., Schmidt A. M., Hudson B. I. (2009). Alternative splicing of the murine receptor for advanced glycation end-products (RAGE) gene. FASEB J. 23, 1766–1774. 10.1096/fj.08-117739 - DOI PMC PubMed
    1. Kass D. A., Shapiro E. P., Kawaguchi M., Capriotti A. R., Scuteri A., deGroof R. C., et al. . (2001). Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation 104, 1464–1470. 10.1161/hc3801.097806 - DOI PubMed
    1. Kay A. M., Simpson C. L., Stewart J. A. (2016). The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J. Diabetes Res. 2016:6809703. 10.1155/2016/6809703 - DOI PMC PubMed
    1. Kislinger T., Tanji N., Wendt T., Qu W., Lu Y., Ferran L. J., Jr., et al. . (2001). Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol. 21, 905–910. 10.1161/01.ATV.21.6.905 - DOI PubMed
    1. Koch M., Chitayat S., Dattilo B. M., Schiefner A., Diez J., Chazin W. J., et al. . (2010). Structural basis for ligand recognition and activation of RAGE. Structure 18, 1342–1352. 10.1016/j.str.2010.05.017 - DOI PMC PubMed
    1. Lakatta E. G., Levy D. (2003). Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set up” for vascular disease. Circulation 107, 139–146. 10.1161/01.CIR.0000048892.83521.58 - DOI PubMed
    1. Lakatta E. G., Sollott S. J. (2002). Perspectives on mammalian cardiovascular aging: humans to molecules. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 132, 699–721. 10.1016/S1095-6433(02)00124-1 - DOI PubMed
    1. Laurent S., Boutouyrie P., Asmar R., Gautier I., Laloux B., Guize L., et al. . (2001). Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37, 1236–1241. 10.1161/01.HYP.37.5.1236 - DOI PubMed
    1. Li H., Horke S., Förstermann U. (2014). Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 237, 208–219. 10.1016/j.atherosclerosis.2014.09.001 - DOI PubMed
    1. Luevano-Contreras C., Chapman-Novakofski K. (2010). Dietary advanced glycation end products and aging. Nutrients 2, 1247–1265. 10.3390/nu2121247 - DOI PMC PubMed
    1. Lutgers H. L., Gerrits E. G., Graaff R., Links T. P., Sluiter W. J., Gans R. O., et al. . (2009). Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus. Diabetologia 52, 789–797. 10.1007/s00125-009-1308-9 - DOI PubMed
    1. Manigrasso M. B., Pan J., Rai V., Zhang J., Reverdatto S., Quadri N., et al. . (2016). Small molecule inhibition of ligand-stimulated RAGE-DIAPH1 signal transduction. Sci. Rep. 6:22450. 10.1038/srep22450 - DOI PMC PubMed
    1. Mattace-Raso F. U., van der Cammen T. J., Hofman A., van Popele N. M., Bos M. L., Schalekamp M. A., et al. . (2006). Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 113, 657–663. 10.1161/CIRCULATIONAHA.105.555235 - DOI PubMed
    1. McNulty M., Mahmud A., Feely J. (2007). Advanced glycation end-products and arterial stiffness in hypertension. Am. J. Hypertens. 20, 242–247. 10.1016/j.amjhyper.2006.08.009 - DOI PubMed
    1. Meerwaldt R., Graaff R., Oomen P. H. N., Links T. P., Jager J. J., Alderson N. L., et al. . (2004). Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia 47, 1324–1330. 10.1007/s00125-004-1451-2 - DOI PubMed
    1. Montezano A. C., Touyz R. M. (2014). Reactive oxygen species, vascular noxs, and hypertension: focus on translational and clinical research. Antioxid. Redox Signal. 20, 164–182. 10.1089/ars.2013.5302 - DOI PMC PubMed
    1. Mozaffarian D., Benjamin E. J., Go A. S., Arnett D. K., Blaha M. J., Cushman M., et al. (2016). Executive summary: heart disease and stroke statistics−2016 update: a report from the american heart association. Circulation 133, 447–454. 10.1161/CIR.0000000000000366 - DOI PubMed
    1. Münch G., Keis R., Wessels A., Riederer P., Bahner U., Heidland A., et al. . (1997). Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur. J. Clin. Chem. Clin. Biochem. 35, 669–677. 10.1515/cclm.1997.35.9.669 - DOI PubMed
    1. Najjar S. S., Scuteri A., Lakatta E. G. (2005). Arterial aging: is it an immutable cardiovascular risk factor? Hypertension 46, 454–462. 10.1161/01.HYP.0000177474.06749.98 - DOI PubMed
    1. Noordzij M. J., Lefrandt J. D., Loeffen E. A., Saleem B. R., Meerwaldt R., Lutgers H. L., et al. . (2012). Skin autofluorescence is increased in patients with carotid artery stenosis and peripheral artery disease. Int. J. Cardiovasc. Imaging 28, 431–438. 10.1007/s10554-011-9805-6 - DOI PMC PubMed
    1. Park L., Raman K. G., Lee K. J., Lu Y., Ferran L. J., Jr., Chow W. S., et al. . (1998). Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat. Med. 4, 1025–1031. 10.1038/2012 - DOI PubMed
    1. Pepe S., Lakatta E. G. (2005). Aging hearts and vessels: masters of adaptation and survival. Cardiovasc. Res. 66, 190–193. 10.1016/j.cardiores.2005.03.004 - DOI PubMed
    1. Peppa M., Raptis S. A. (2008). Advanced glycation end products and cardiovascular disease. Curr. Diabetes Rev. 4, 92–100. 10.2174/157339908784220732 - DOI PubMed
    1. Pitt J. J. (2009). Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin. Biochem. Rev. 30, 19–34. - PMC PubMed
    1. Rabbani N., Thornalley P. J. (2014). The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy. Diabetes 63, 50–52. 10.2337/db13-1606 - DOI PubMed
    1. Rai V., Maldonado A. Y., Burz D. S., Reverdatto S., Schmidt A. M., Shekhtman A. (2012). Signal transduction in receptor for advanced glycation end products (RAGE): solution structure of c-terminal rage (ctRAGE) and its binding to mDia1. J. Biol. Chem. 287, 5133–5144. 10.1074/jbc.M111.277731 - DOI PMC PubMed
    1. Reddy G. K. (2004). AGE-related cross-linking of collagen is associated with aortic wall matrix stiffness in the pathogenesis of drug-induced diabetes in rats. Microvasc. Res. 68, 132–142. 10.1016/j.mvr.2004.04.002 - DOI PubMed
    1. Reiniger N., Lau K., McCalla D., Eby B., Cheng B., Lu Y., et al. . (2010). Deletion of the receptor for advanced glycation end products reduces glomerulosclerosis and preserves renal function in the diabetic OVE26 mouse. Diabetes 59, 2043–2054. 10.2337/db09-1766 - DOI PMC PubMed
    1. Rubattu S., Mennuni S., Testa M., Mennuni M., Pierelli G., Pagliaro B., et al. . (2013). Pathogenesis of chronic cardiorenal syndrome: is there a role for oxidative stress? Int. J. Mol. Sci. 14, 23011–23032. 10.3390/ijms141123011 - DOI PMC PubMed
    1. Sabbagh M. N., Agro A., Bell J., Aisen P. S., Schweizer E., Galasko D. (2011). PF-04494700, an oral inhibitor of receptor for advanced glycation end products (RAGE), in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 25, 206–212. 10.1097/WAD.0b013e318204b550 - DOI PMC PubMed
    1. Safar M. E., Levy B. I., Struijker-Boudier H. (2003). Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 107, 2864–2869. 10.1161/01.CIR.0000069826.36125.B4 - DOI PubMed
    1. Schleicher E. D., Wagner E., Nerlich A. G. (1997). Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J. Clin. Invest. 99, 457–468. 10.1172/JCI119180 - DOI PMC PubMed
    1. Schmidt A. M., Yan S. D., Wautier J. L., Stern D. (1999). Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ. Res. 84, 489–497. 10.1161/01.RES.84.5.489 - DOI PubMed
    1. Sell D. R., Monnier V. M. (2012). Molecular basis of arterial stiffening: role of glycation - a mini-review. Gerontology 58, 227–237. 10.1159/000334668 - DOI PubMed
    1. Semba R. D., Sun K., Schwartz A. V., Varadhan R., Harris T. B., Satterfield S., et al. . (2015). Serum carboxymethyl-lysine, an advanced glycation end product, is associated with arterial stiffness in older adults. J. Hypertens. 33, 797–803; discussion: 803. 10.1097/HJH.0000000000000460 - DOI PMC PubMed
    1. Sethi S., Rivera O., Oliveros R., Chilton R. (2014). Aortic stiffness: pathophysiology, clinical implications, and approach to treatment. Integr. Blood Press. Control 7, 29–34. 10.2147/IBPC.S59535 - DOI PMC PubMed
    1. Sims T. J., Rasmussen L. M., Oxlund H., Bailey A. J. (1996). The role of glycation cross-links in diabetic vascular stiffening. Diabetologia 39, 946–951. 10.1007/BF00403914 - DOI PubMed
    1. Singh V. P., Bali A., Singh N., Jaggi A. S. (2014). Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 18, 1–14. 10.4196/kjpp.2014.18.1.1 - DOI PMC PubMed
    1. Soulis T., Thallas V., Youssef S., Gilbert R. E., McWilliam B. G., Murray-McIntosh R. P., et al. . (1997). Advanced glycation end products and their receptors co-localise in rat organs susceptible to diabetic microvascular injury. Diabetologia 40, 619–628. 10.1007/s001250050725 - DOI PubMed
    1. Spinetti G., Wang M., Monticone R., Zhang J., Zhao D., Lakatta E. G. (2004). Rat aortic MCP-1 and its receptor CCR2 increase with age and alter vascular smooth muscle cell function. Arterioscler. Thromb. Vasc. Biol. 24, 1397–1402. 10.1161/01.ATV.0000134529.65173.08 - DOI PubMed
    1. Sprague A. H., Khalil R. A. (2009). Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem. Pharmacol. 78, 539–552. 10.1016/j.bcp.2009.04.029 - DOI PMC PubMed
    1. Stitt A. W., He C., Friedman S., Scher L., Rossi P., Ong L., et al. . (1997). Elevated AGE-modified ApoB in sera of euglycemic, normolipidemic patients with atherosclerosis: relationship to tissue AGEs. Mol. Med. 3, 617–627. - PMC PubMed
    1. Strait J. B., Lakatta E. G. (2012). Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail. Clin. 8, 143–164. 10.1016/j.hfc.2011.08.011 - DOI PMC PubMed
    1. Stürmer M., Šebeková K., Fazeli G., Bahner U., Stäb F., Heidland A. (2015). 25-hydroxyvitamin d and advanced glycation endproducts in healthy and hypertensive subjects: are there interactions? J. Ren. Nutr. 25, 209–216. 10.1053/j.jrn.2014.10.027 - DOI PubMed
    1. Takeuchi M., Makita Z., Yanagisawa K., Kameda Y., Koike T. (1999). Detection of noncarboxymethyllysine and carboxymethyllysine advanced glycation end products (AGE) in serum of diabetic patients. Mol. Med. 5, 393–405. - PMC PubMed
    1. Tan A. L., Forbes J. M., Cooper M. E. (2007). AGE, RAGE, and ROS in diabetic nephropathy. Semin. Nephrol. 27, 130–143. 10.1016/j.semnephrol.2007.01.006 - DOI PubMed
    1. Tanaka K., Tani Y., Asai J., Nemoto F., Kusano Y., Suzuki H., et al. . (2012). Skin autofluorescence is associated with severity of vascular complications in Japanese patients with type 2 diabetes. Diabet. Med. 29, 492–500. 10.1111/j.1464-5491.2011.03448.x - DOI PubMed
    1. Touré F., Fritz G., Li Q., Rai V., Daffu G., Zou Y. S., et al. . (2012). Formin mDia1 mediates vascular remodeling via integration of oxidative and signal transduction pathways. Circ. Res. 110, 1279–1293. 10.1161/CIRCRESAHA.111.262519 - DOI PMC PubMed
    1. Uribarri J., del Castillo M. D., de la Maza M. P., Filip R., Gugliucci A., Luevano-Contreras C., et al. . (2015). Dietary advanced glycation end products and their role in health and disease. Adv. Nutr. 6, 461–473. 10.3945/an.115.008433 - DOI PMC PubMed
    1. Vaitkevicius P. V., Lane M., Spurgeon H., Ingram D. K., Roth G. S., Egan J. J., et al. . (2001). A cross-link breaker has sustained effects on arterial and ventricular properties in older rhesus monkeys. Proc. Natl. Acad. Sci. U.S.A. 98, 1171–1175. 10.1073/pnas.98.3.1171 - DOI PMC PubMed
    1. Vikramadithyan R. K., Hu Y., Noh H. L., Liang C. P., Hallam K., Tall A. R., et al. . (2005). Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice. J. Clin. Invest. 115, 2434–2443. 10.1172/JCI24819 - DOI PMC PubMed
    1. Wang M., Zhang J., Jiang L. Q., Spinetti G., Pintus G., Monticone R., et al. . (2007). Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension 50, 219–227. 10.1161/HYPERTENSIONAHA.107.089409 - DOI PubMed
    1. Wautier J. L., Wautier M. P., Schmidt A. M., Anderson G. M., Hori O., Zoukourian C., et al. . (1994). Advanced Glycation End Products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications. Proc. Natl. Acad. Sci. U.S.A. 91, 7742–7746. 10.1073/pnas.91.16.7742 - DOI PMC PubMed
    1. Wautier M. P., Chappey O., Corda S., Stern D. M., Schmidt A. M., Wautier J. L. (2001). Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am. J. Physiol. Endocrinol. Metab. 280, E685–E694. - PubMed
    1. Wu M. S., Liang J. T., Lin Y. D., Wu E. T., Tseng Y. Z., Chang K. C. (2008). Aminoguanidine prevents the impairment of cardiac pumping mechanics in rats with streptozotocin and nicotinamide-induced type 2 diabetes. Br. J. Pharmacol. 154, 758–764. 10.1038/bjp.2008.119 - DOI PMC PubMed
    1. Xu B., Chibber R., Ruggiero D., Kohner E., Ritter J., Ferro A. (2003). Impairment of vascular endothelial nitric oxide synthase activity by advanced glycation end products. FASEB J. 17, 1289–1291. 10.1096/fj.02-0490fje - DOI PubMed
    1. Xu Y., Toure F., Qu W., Lin L., Song F., Shen X., et al. . (2010). Advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling and up-regulation of Egr-1 in hypoxic macrophages. J. Biol. Chem. 285, 23233–23240. 10.1074/jbc.M110.117457 - DOI PMC PubMed
    1. Xue J., Ray R., Singer D., Böhme D., Burz D. S., Rai V., et al. . (2014). The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs. Biochemistry 53, 3327–3335. 10.1021/bi500046t - DOI PMC PubMed
    1. Yamagishi S., Yonekura H., Yamamoto Y., Katsuno K., Sato F., Mita I., et al. . (1997). Advanced glycation end products-driven angiogenesis in vitro. Induction of the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor. J. Biol. Chem. 272, 8723–8730. 10.1074/jbc.272.13.8723 - DOI PubMed
    1. Yan S. D., Schmidt A. M., Anderson G. M., Zhang J., Brett J., Zou Y. S., et al. . (1994). Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J. Biol. Chem. 269, 9889–9897. - PubMed
    1. Yan S. F., Ramasamy R., Naka Y., Schmidt A. M. (2003). Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ. Res. 93, 1159–1169. 10.1161/01.RES.0000103862.26506.3D - DOI PubMed
    1. Yonekura H., Yamamoto Y., Sakurai S., Petrova R. G., Abedin M. J., Li H., et al. . (2003). Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem. J. 370, 1097–1109. 10.1042/bj20021371 - DOI PMC PubMed
    1. Zieman S. J., Melenovsky V., Clattenburg L., Corretti M. C., Capriotti A., Gerstenblith G., et al. . (2007). Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J. Hypertens. 25, 577–583. 10.1097/HJH.0b013e328013e7dd - DOI PubMed